Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1331345, 2024.
Article in English | MEDLINE | ID: mdl-38370401

ABSTRACT

Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues. Despite this, Neu5Gc-containing antigens, including the ganglioside GM3(Neu5Gc) have consistently been observed on tumor cells across a variety of human malignancies. This restricted expression makes GM3(Neu5Gc) an appealing and highly specific target for immunotherapy. In this study, we designed and evaluated 14F7-28z CAR T cells, with a targeting unit derived from the GM3(Neu5Gc)-specific murine antibody 14F7. These cells exhibited exceptional specificity, proficiently targeting GM3(Neu5Gc)-expressing murine tumor cells in syngeneic mouse models, ranging from B cell malignancies to epithelial tumors, without compromising safety. Notably, human tumor cells enhanced with murine Cmah were effectively targeted and eliminated by the 14F7 CAR T cells. Nonetheless, despite the detectable presence of GM3(Neu5Gc) in unmodified human tumor xenografts, the levels were insufficient to trigger a tumoricidal T-cell response with the current CAR T cell configuration. Overall, our findings highlight the potential of targeting the GM3(Neu5Gc) ganglioside using CAR T cells across a variety of cancers and set the stage for the optimization of 14F7-based therapies for future human clinical application.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , G(M3) Ganglioside/therapeutic use , Antigens, Neoplasm
2.
ACS Chem Biol ; 17(9): 2631-2642, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36070465

ABSTRACT

Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.


Subject(s)
Bacteriophages , Factor VII , Animals , Humans , Mice , Amino Acids , Antibodies, Monoclonal/metabolism , Bacteriophages/metabolism , Enzyme Precursors/metabolism , Factor VII/metabolism , Histones , Peptide Hydrolases/metabolism , Peptides/metabolism , Serine Endopeptidases/metabolism
3.
Protein Eng Des Sel ; 352022 02 17.
Article in English | MEDLINE | ID: mdl-35871543

ABSTRACT

TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.


Subject(s)
Antibodies , Bacteriophages , Humans , Peptides/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
4.
Explor Target Antitumor Ther ; 3: 37-49, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35309250

ABSTRACT

Aim: T-helper cells could play an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), a common B-cell neoplasm. Although CLL cells can present soluble antigens targeted from the B-cell receptor to T-helper cells via major histocompatibility complex (MHC) class II, antigens recognized by some CLL cells may be encountered in a particulate form. Here the ability of CLL cells to internalize and present anti-immunoglobulin M (IgM) beads as a model for the interaction of CLL cells with particulate antigens was investigated. Methods: The effect of anti-IgM beads on antigen presentation pathways was analyzed using RNA-seq and internalization of anti-IgM beads by primary CLL cells was investigated using confocal microscopy and flow cytometry. Antigen presentation was investigated by analyzing activation of a T-cell line expressing a T-cell receptor specific for a peptide derived from mouse κ light chains after incubating CLL cells with a mouse κ light chain-containing anti-IgM monoclonal antibody. Kinase inhibitors were used to characterize the pathways mediating internalization and antigen presentation. Results: Stimulation of surface IgM of CLL cells increased expression of the antigen presentation machinery and CLL cells were able to phagocytose anti-IgM beads. Internalization of anti-IgM beads was associated with MHC class II-restricted activation of cognate T-helper cells. Antigen presentation by CLL cells was dependent on activity of spleen tyrosine kinase (SYK) and phosphatidylinositol 3-kinase delta (PI3Kδ) but was unaffected by inhibitors of Bruton's tyrosine kinase (BTK). Conclusions: CLL cells can internalize and present antigen from anti-IgM beads. This capacity of CLL cells may be particularly important for recruitment of T-cell help in vivo in response to particulate antigens.

5.
Sci Immunol ; 6(62)2021 08 20.
Article in English | MEDLINE | ID: mdl-34417258

ABSTRACT

Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)-like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Celiac Disease/immunology , Glutens/immunology , HLA-DQ Antigens/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cell Line, Tumor , Epitopes, T-Lymphocyte/immunology , Glutens/chemistry , HLA-DQ Antigens/chemistry , Humans , Lymphocyte Activation/immunology , Mice , Models, Molecular , Peptides/chemistry , Receptors, Antigen, T-Cell/chemistry
6.
Blood Adv ; 4(12): 2595-2605, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32544236

ABSTRACT

CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow-resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.


Subject(s)
Bone Marrow , Multiple Myeloma , Animals , CD4-Positive T-Lymphocytes , Macrophages , Mice , Tumor Microenvironment
7.
Chembiochem ; 21(13): 1875-1884, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32180321

ABSTRACT

We describe a novel, easy and efficient combinatorial phage display peptide substrate-mining method to map the substrate specificity of proteases. The peptide library is displayed on the pVII capsid of the M13 bacteriophage, which renders pIII necessary for infectivity and efficient retrieval, in an unmodified state. As capture module, the 3XFLAG was chosen due to its very high binding efficiency to anti-FLAG mAbs and its independency of any post-translational modification. This library was tested with Factor-VII activating protease (WT-FSAP) and its single-nucleotide polymorphism variant Marburg-I (MI)-FSAP. The WT-FSAP results confirmed the previously reported Arg/Lys centered FSAP cleavage site consensus as dominant, as well as reinforcing MI-FSAP as a loss-of-function mutant. Surprisingly, rare substrate clones devoid of basic amino acids were also identified. Indeed one of these peptides was cleaved as free peptide, thus suggesting a broader range of WT-FSAP substrates than previously anticipated.


Subject(s)
Peptides/metabolism , Serine Endopeptidases/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Peptide Library , Peptides/analysis , Peptides/chemistry , Substrate Specificity
8.
Eur J Immunol ; 50(1): 142-145, 2020 01.
Article in English | MEDLINE | ID: mdl-31580480

ABSTRACT

The semi-public T-cell response towards the gluten epitope DQ2.5-glia-α2 uses a prototypic TCR encoded by the germline segments TRAV26-1 and TRBV7-2. Through mutagenesis experiments, we show that a TRAV26-1encoded recognition motif contacts the MHC ß-chain and the TCR CDR3ß loop underpinning this conserved T-cell response restricted to the prototypic TCRs.


Subject(s)
Celiac Disease/immunology , Epitopes, T-Lymphocyte/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology , Amino Acid Motifs/immunology , Epitopes, T-Lymphocyte/chemistry , Humans , Receptors, Antigen, T-Cell, alpha-beta/chemistry
9.
Proc Natl Acad Sci U S A ; 116(51): 25850-25859, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31796587

ABSTRACT

The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+ T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+ B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+ T cells, extrafollicular T-B cell collaboration and some germinal center formation, and production of Id+ IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.


Subject(s)
Histocompatibility Antigens Class II/metabolism , Neuropeptides/metabolism , Receptors, Antigen, B-Cell/metabolism , T-Lymphocytes/immunology , Animals , Antibodies, Anti-Idiotypic/genetics , Antibodies, Anti-Idiotypic/immunology , Autoimmune Diseases/metabolism , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Immunoglobulin G , Mice , Mice, Inbred BALB C
10.
Antibodies (Basel) ; 8(2)2019 May 09.
Article in English | MEDLINE | ID: mdl-31544838

ABSTRACT

Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide-major histocompatibility molecule (pMHC) complexes are often referred to as "TCR-like" mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use.

11.
Gastroenterology ; 156(5): 1428-1439.e10, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30593798

ABSTRACT

BACKGROUND & AIMS: Development of celiac disease is believed to involve the transglutaminase-dependent response of CD4+ T cells toward deamidated gluten peptides in the intestinal mucosa of individuals with specific HLA-DQ haplotypes. We investigated the antigen presentation process during this mucosal immune response. METHODS: We generated monoclonal antibodies (mAbs) specific for the peptide-MHC (pMHC) complex of HLA-DQ2.5 and the immunodominant gluten epitope DQ2.5-glia-α1a using phage display. We used these mAbs to assess gluten peptide presentation and phenotypes of presenting cells by flow cytometry and enzyme-linked immune absorbent spot (ELISPOT) in freshly prepared single-cell suspensions from intestinal biopsies from 40 patients with celiac disease (35 untreated and 5 on a gluten-free diet) as well as 18 subjects with confirmed noninflamed gut mucosa (controls, 12 presumed healthy, 5 undergoing pancreatoduodenectomy, and 1 with potential celiac disease). RESULTS: Using the mAbs, we detected MHC complexes on cells from intestinal biopsies from patients with celiac disease who consume gluten, but not from patients on gluten-free diets. We found B cells and plasma cells to be the most abundant cells that present DQ2.5-glia-α1a in the inflamed mucosa. We identified a subset of plasma cells that expresses B-cell receptors (BCR) specific for gluten peptides or the autoantigen transglutaminase 2 (TG2). Expression of MHC class II (MHCII) was not restricted to these specific plasma cells in patients with celiac disease but was observed in an average 30% of gut plasma cells from patients and controls. CONCLUSIONS: A population of plasma cells from intestinal biopsies of patients with celiac disease express MHCII; this is the most abundant cell type presenting the immunodominant gluten peptide DQ2.5-glia-α1a in the tissues from these patients. These results indicate that plasma cells in the gut can function as antigen-presenting cells and might promote and maintain intestinal inflammation in patients with celiac disease or other inflammatory disorders.


Subject(s)
Antigen-Presenting Cells/immunology , Celiac Disease/immunology , Duodenum/immunology , Glutens/immunology , HLA-DQ Antigens/immunology , Immunity, Mucosal , Immunodominant Epitopes , Intestinal Mucosa/immunology , Peptide Fragments/immunology , Plasma Cells/immunology , Animals , Antigen-Presenting Cells/metabolism , Case-Control Studies , Celiac Disease/diagnosis , Celiac Disease/diet therapy , Celiac Disease/metabolism , Cell Line , Diet, Gluten-Free , Duodenum/metabolism , Duodenum/pathology , GTP-Binding Proteins/immunology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Phenotype , Plasma Cells/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/immunology
12.
Antib Ther ; 2(2): 56-63, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33928223

ABSTRACT

The successful use of chimeric antigen receptor (CAR) for hematological cancer treatment has influenced the direction taken in translational research toward an increasing focus on personalized targeted immunotherapy. Thus, a growing number of labs worldwide are now interested in testing their old antibody collections in this format to broaden the spectrum of utility and improve safety and efficacy. We herein present a straightforward protocol for the identification of an antibody from a hybridoma and the design of the single chain fragment that will be placed on the extracellular part of the CAR construct. We further show how to test the expression and the activity of the construct in primary T cells. We illustrate our demonstration with two new CARs targeted against the B cell receptor, more precisely the light chains κ and λ, that represent potential alternatives to the CD19 CAR used in the treatment of B-cell malignancies.

13.
Sci Rep ; 8(1): 10836, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30022069

ABSTRACT

Targeted cancer immunotherapy offers increased efficacy concomitantly with reduced side effects. One antibody with promising clinical potential is 14F7, which specifically recognises the NeuGc GM3 ganglioside. This antigen is found in the plasma membrane of a range of tumours, but is essentially absent from healthy human cells. 14F7 can discriminate NeuGc GM3 from the very similar NeuAc GM3, a common component of cell membranes. The molecular basis for this unique specificity is poorly understood. Here we designed and expressed 14F7-derived single-chain Fvs (scFvs), which retained the specificity of the parent antibody. Detailed expression and purification protocols are described as well as the synthesis of the NeuGc GM3 trisaccharide. The most successful scFv construct, which comprises an alternative variable light chain (VLA), allowed structure determination to 2.2 Å resolution. The structure gives insights into the conformation of the important CDR H3 loop and the suspected antigen binding site. Furthermore, the presence of VLA instead of the original VL elucidates how this subdomain indirectly stabilises the CDR H3 loop. The current work may serve as a guideline for the efficient production of scFvs for structure determination.


Subject(s)
Antibodies, Monoclonal/chemistry , G(M3) Ganglioside/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Light Chains/chemistry , Immunoglobulin Variable Region/chemistry , Neoplasms/drug therapy , Single-Chain Antibodies/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Crystallography, X-Ray , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Protein Conformation , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism
14.
PLoS One ; 13(4): e0195868, 2018.
Article in English | MEDLINE | ID: mdl-29649333

ABSTRACT

There is a quest for production of soluble protein of high quality for the study of T-cell receptors (TCRs), but expression often results in low yields of functional molecules. In this study, we used an E. coli chaperone-assisted periplasmic production system and compared expression of 4 different soluble TCR formats: single-chain TCR (scTCR), two different disulfide-linked TCR (dsTCR) formats, and chimeric Fab (cFab). A stabilized version of scTCR was also included. Additionally, we evaluated the influence of host (XL1-Blue or RosettaBlueTM) and the effect of IPTG induction on expression profiles. A celiac disease patient-derived TCR with specificity for gluten was used, and we achieved detectable expression for all formats and variants. We found that expression in RosettaBlueTM without IPTG induction resulted in the highest periplasmic yields. Moreover, after large-scale expression and protein purification, only the scTCR format was obtained in high yields. Importantly, stability engineering of the scTCR was a prerequisite for obtaining reliable biophysical characterization of the TCR-pMHC interaction. The scTCR format is readily compatible with high-throughput screening approaches that may enable both development of reagents allowing for defined peptide MHC (pMHC) characterization and discovery of potential novel therapeutic leads.


Subject(s)
Escherichia coli/genetics , Gene Expression , Models, Molecular , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Escherichia coli/metabolism , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation , Protein Multimerization , Receptors, Antigen, T-Cell/isolation & purification , Receptors, Antigen, T-Cell/metabolism , Solubility , Structure-Activity Relationship
15.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878121

ABSTRACT

Selection of biased T cell receptor (TCR) repertoires across individuals is seen in both infectious diseases and autoimmunity, but the underlying molecular basis leading to these shared repertoires remains unclear. Celiac disease (CD) occurs primarily in HLA-DQ2.5+ individuals and is characterized by a CD4+ T cell response against gluten epitopes dominated by DQ2.5-glia-α1a and DQ2.5-glia-α2. The DQ2.5-glia-α2 response recruits a highly biased TCR repertoire composed of TRAV26-1 paired with TRBV7-2 harboring a semipublic CDR3ß loop. We aimed to unravel the molecular basis for this signature. By variable gene segment exchange, directed mutagenesis, and cellular T cell activation studies, we found that TRBV7-3 can substitute for TRBV7-2, as both can contain the canonical CDR3ß loop. Furthermore, we identified a pivotal germline-encoded MHC recognition motif centered on framework residue Y40 in TRAV26-1 engaging both DQB1*02 and the canonical CDR3ß. This allowed prediction of expanded DQ2.5-glia-α2-reactive TCR repertoires, which were confirmed by single-cell sorting and TCR sequencing from CD patient samples. Our data refine our understanding of how HLA-dependent biased TCR repertoires are selected in the periphery due to germline-encoded residues.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Codon , Complementarity Determining Regions/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell, alpha-beta/physiology , Celiac Disease/immunology , Clone Cells , Cloning, Molecular , Epitopes, T-Lymphocyte/immunology , Glutens/immunology , HLA-DQ Antigens/immunology , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell, alpha-beta/genetics
16.
Thromb Haemost ; 117(9): 1750-1760, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28726978

ABSTRACT

Factor VII (FVII) activating protease (FSAP) is a circulating serine protease that is likely to be involved in a number of disease conditions such as stroke, atherosclerosis, liver fibrosis, thrombosis and cancer. To date, no systematic information is available about the substrate specificity of FSAP. Applying phage display and positional scanning substrate combinatorial library (PS-SCL) approaches we have characterised the specificity of FSAP towards small peptides. Results were evaluated in the context of known protein substrates as well as molecular modelling of the peptides in the active site of FSAP. The representative FSAP-cleaved sequence obtained from the phage display method was Val-Leu-Lys-Arg-Ser (P4-P1'). The sequence X-Lys/Arg-Nle-Lys/Arg (P4-P1) was derived from the PS-SCL method. These results show a predilection for cleavage at a cluster of basic amino acids on the nonprime side. Quenched fluorescent substrate (Ala-Lys-Nle-Arg-AMC) (amino methyl coumarin) and (Ala-Leu-Lys-Arg-AMC) had a higher selectivity for FSAP compared to other proteases from the hemostasis system. These substrates could be used to measure FSAP activity in a complex biological system such as plasma. In histone-treated plasma there was a specific activation of pro-FSAP as validated by the use of an FSAP inhibitory antibody, corn trypsin inhibitor to inhibit Factor XIIa and hirudin to inhibit thrombin, which may account for some of the haemostasis-related effects of histones. These results will aid the development of further selective FSAP activity probes as well as specific inhibitors that will help to increase the understanding of the functions of FSAP in vivo.


Subject(s)
Peptides/metabolism , Serine Endopeptidases/metabolism , Antithrombins/pharmacology , Catalytic Domain , Cell Surface Display Techniques , Enzyme Activation , Hirudins/pharmacology , Histones/metabolism , Humans , Kinetics , Molecular Docking Simulation , Peptide Library , Peptides/chemistry , Peptides/genetics , Plant Proteins/chemistry , Plant Proteins/pharmacology , Protein Binding , Protein Conformation , Serine Endopeptidases/blood , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Substrate Specificity , Thrombin/antagonists & inhibitors , Thrombin/metabolism
17.
J Immunol ; 197(9): 3575-3585, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27671110

ABSTRACT

It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II-targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II-targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans.


Subject(s)
Antibody Formation , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Vaccines, DNA/immunology , Animals , Antigens/metabolism , Cell Proliferation , Cells, Cultured , Cross Reactions , Ferrets , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Lymphocyte Activation , Mice , Swine , Vaccination
18.
Front Oncol ; 4: 378, 2014.
Article in English | MEDLINE | ID: mdl-25629004

ABSTRACT

Cancer immunotherapy has finally come of age, demonstrated by recent progress in strategies that engage the endogenous adaptive immune response in tumor killing. Occasionally, significant and durable tumor regression has been achieved. A giant leap forward was the demonstration that the pre-existing polyclonal T cell repertoire could be re-directed by use of cloned T cell receptors (TCRs), to obtain a defined tumor-specific pool of T cells. However, the procedure must be performed with caution to avoid deleterious cross-reactivity. Here, the use of engineered soluble TCRs may represent a safer, yet powerful, alternative. There is also a need for deeper understanding of the processes that underlie antigen presentation in disease and homeostasis, how tumor-specific peptides are generated, and how epitope spreading evolves during tumor development. Due to its plasticity, the pivotal interaction where a TCR engages a peptide/MHC (pMHC) also requires closer attention. For this purpose, phage display as a tool to evolve cloned TCRs represents an attractive avenue to generate suitable reagents allowing the study of defined pMHC presentation, TCR engagement, as well as for the discovery of novel therapeutic leads. Here, we highlight important aspects of the current status in this field.

19.
Sci Rep ; 3: 1162, 2013.
Article in English | MEDLINE | ID: mdl-23362461

ABSTRACT

We here report a novel phage display selection strategy enabling fast and easy selection of thermostabilized proteins. The approach is illustrated with stabilization of an aggregation-prone soluble single chain T cell receptor (scTCR) characteristic of the murine MOPC315 myeloma model. Random mutation scTCR phage libraries were prepared in E. coli over-expressing the periplasmic chaperone FkpA, and such over-expression during library preparation proved crucial for successful downstream selection. The thermostabilized scTCR(mut) variants selected were produced in high yields and isolated as monomers. Thus, the purified scTCRs could be studied with regard to specificity and equilibrium binding kinetics to pMHC using surface plasmon resonance (SPR). The results demonstrate a difference in affinity for pMHCs that display germ line or tumor-specific peptides which explains the tumor-specific reactivity of the TCR. This FkpA-assisted thermostabilization strategy extends the utility of recombinant TCRs and furthermore, may be of general use for efficient evolution of proteins.


Subject(s)
Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Multiple Myeloma/metabolism , Peptide Library , Peptidylprolyl Isomerase/metabolism , Protein Engineering/methods , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Animals , Cell Line , Cell Line, Tumor , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Mice , Molecular Chaperones , Multiple Myeloma/genetics , Peptidylprolyl Isomerase/genetics , Receptors, Antigen, T-Cell/genetics
20.
Methods ; 58(1): 40-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22819858

ABSTRACT

Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform.


Subject(s)
Capsid Proteins/biosynthesis , Cell Surface Display Techniques , Recombinant Fusion Proteins/biosynthesis , Bacteriophages , Capsid Proteins/genetics , Directed Molecular Evolution , Escherichia coli , Humans , Peptide Library , Protein Engineering , Protein Sorting Signals , Protein Transport , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...