Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hosp Infect ; 131: 81-88, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36404573

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a continuing source of hospital-acquired infection and outbreaks. At Akershus University Hospital in Norway, traditional contact tracing has been combined with whole-genome sequencing (WGS) surveillance in real-time to investigate potential hospital outbreaks. AIM: To describe the advantages and challenges encountered when using WGS as a real-time tool in hospital outbreak investigation and surveillance during the SARS-CoV-2 pandemic. METHODS: Routine contact tracing in the hospital was performed for all healthcare workers (HCWs) who tested positive for SARS-CoV-2. Viral RNA from all positive patient and HCW samples was sequenced in real-time using nanopore sequencing and the ARTIC Network protocol. Suspected outbreaks involving five or more individuals with viral sequences were described. FINDINGS: Nine outbreaks were suspected based on contact tracing, and one outbreak was suspected based on WGS results. Five outbreaks were confirmed; of these, two outbreaks were supported but could not be confirmed by WGS with high confidence, one outbreak was found to consist of two different lineages, and two outbreaks were refuted. CONCLUSIONS: WGS is a valuable tool in hospital outbreak investigations when combined with traditional contact tracing. Inclusion of WGS data improved outbreak demarcation, identified unknown transmission chains, and highlighted weaknesses in existing infection control measures.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Disease Outbreaks , Cross Infection/epidemiology , Hospitals, University
2.
J Hosp Infect ; 111: 107-116, 2021 May.
Article in English | MEDLINE | ID: mdl-33647375

ABSTRACT

BACKGROUND: During the SARS-CoV-2 pandemic, healthcare workers (HCWs) are being exposed to infection both at work and in their communities. Determining where HCWs might have been infected is challenging based on epidemiological data alone. At Akershus University Hospital, Norway, several clusters of possible intra-hospital SARS-CoV-2 transmission were identified based on routine contact tracing. AIM: To determine whether clusters of suspected intra-hospital SARS-CoV-2 transmission could be resolved by combining whole genome sequencing (WGS) of SARS-CoV-2 with contact tracing data. METHODS: Epidemiological data were collected during routine contact tracing of polymerase chain reaction-confirmed SARS-CoV-2-positive HCWs. Possible outbreaks were identified as wards with two or more infected HCWs defined as close contacts who tested positive for SARS-CoV-2 less than three weeks apart. Viral RNA from naso-/oropharyngeal samples underwent nanopore sequencing in direct compliance to the ARTIC Network protocol. FINDINGS: Five outbreaks were suspected from contact tracing. Viral consensus sequences from 24 HCWs, two patients, and seven anonymous samples were analysed. Two outbreaks were confirmed, one refuted, and two remained undetermined. One new potential outbreak was discovered. CONCLUSION: Combined with epidemiological data, nanopore WGS was a useful tool for investigating intra-hospital SARS-CoV-2 transmission. WGS helped to resolve questions about possible outbreaks and to guide local infection prevention and control measures.


Subject(s)
COVID-19/transmission , Health Personnel/statistics & numerical data , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Occupational Diseases/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Adult , COVID-19/epidemiology , Female , Genome, Viral , Humans , Male , Middle Aged , Nanopores , Norway/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...