Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.421
Filter
1.
World J Clin Cases ; 12(18): 3505-3514, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983404

ABSTRACT

BACKGROUND: Hypertrophic scar (HTS) is dermal fibroproliferative disorder, which may cause physiological and psychological problems. Currently, the potential mechanism of WuFuYin (WFY) in the treatment of HTS remained to be elucidated. AIM: To explore the potential mechanism of WFY in treating HTS. METHODS: Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. HTS-related genes were obtained from the GeneCards, DisGeNET, and National Center for Biotechnology Information. The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome (KEGG) enrichment analysis. A protein + IBM-protein interaction (PPI) network was developed using STRING database and Cytoscape. To confirm the high affinity between compounds and targets, molecular docking was performed. RESULTS: A total of 65 core genes, which were both related to compounds and HTS, were selected from multiple databases. PPI analysis showed that CKD2, ABCC1, MMP2, MMP9, glycogen synthase kinase 3 beta (GSK3B), PRARG, MMP3, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG) were the hub targets and MOL004941, MOL004935, MOL004866, MOL004993, and MOL004989 were the key compounds of WFY against HTS. The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway. Moreover, by performing molecular docking, we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity. CONCLUSION: The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941, MOL004989, and MOL004993 were the main compounds of WFY in HTS treatment.

2.
BMC Pregnancy Childbirth ; 24(1): 464, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970001

ABSTRACT

Furcate cord insertion refers to the separation of umbilical vessels before reaching the placenta, where the branching vessels normally attach at the edge of the placental parenchyma or near the placental membranes. This is an extremely rare abnormal umbilical cord insertion. This paper reported a case of a furcate cord insertion, where the rupture of exposed umbilical vessels led to intrauterine fetal death at full term. Through literature review, we analyzed the prenatal ultrasound characteristics and pregnancy outcomes of furcate cord insertions, with the aim to improve detection rates and reduce the risk of adverse pregnancy outcomes.


Subject(s)
Fetal Death , Ultrasonography, Prenatal , Umbilical Cord , Humans , Female , Pregnancy , Umbilical Cord/abnormalities , Fetal Death/etiology , Adult , Placenta/blood supply , Placenta/pathology
3.
Neuroreport ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973496

ABSTRACT

The aim of this study was to explore the neuroprotective effects of the P2X7 receptor antagonist A740003 on retinal ganglion cells (RGCs) in chronic intraocular hypertension (COH) experimental glaucoma mouse model. Bioinformatics was used to analyze the glaucoma-related genes. Western blot, real-time fluorescence quantitative PCR, and immunofluorescence staining techniques were employed to explore the mechanisms underlying the neuroprotective effects of A740003 on RGCs in COH retinas. Bioinformatic analysis revealed that oxidative stress, neuroinflammation, and cell apoptosis were highly related to the pathogenesis of glaucoma. In COH retinas, intraocular pressure elevation significantly increased the levels of translocator protein, a marker of microglial activation, which could be reversed by intravitreal preinjection of A740003. A740003 also suppressed the increased mRNA levels of proinflammatory cytokines interleukin (IL) 1ß and tumor necrosis factor α in COH retinas. In addition, although the mRNA levels of anti-inflammatory cytokine IL-4 and IL-10 were kept unchanged in COH retinas, administration of A740003 could increase their levels. The mRNA and protein levels of Bax and cleaved caspase-3 were increased in COH retinas, which could be partially reversed by A740003, while the levels of Bcl-2 kept unchanged in COH retinas with or without the injections of A740003. Furthermore, A740003 partially attenuated the reduction in the numbers of Brn-3a-positive RGCs in COH mice. A740003 could provide neuroprotective roles on RGCs by inhibiting the microglia activation, attenuating the retinal inflammatory response, reducing the apoptosis of RGCs, and enhancing the survival of RGCs in COH experimental glaucoma.

4.
Hum Vaccin Immunother ; 20(1): 2372883, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38977424

ABSTRACT

Multiple studies have documented low human papillomavirus (HPV) vaccine uptake among Chinese girls. It remains crucial to determine the parental willingness to pay (WTP) HPV vaccine for girls. We conducted a cross-sectional study recruiting 3904 parents with girls aged 9-14 in Shanghai, China, employing an online questionnaire with a convenience sampling strategy. Parental WTP, both range of payment and estimated point value, were determined for themselves (or wives) and daughters. HPV vaccine uptake was 22.44% in mothers and 3.21% in daughters. Respondents favored WTP ≤ 1000 CNY/138 USD for themselves (or wives), whereas showed increasing WTP along with valency of HPV vaccine for daughters (2-valent: 68.62% ≤1000 CNY/138 USD; 4-valent: 56.27% 1001-2000 CNY/138-277 USD; 9-valent: 65.37% ≥2001 CNY/277 USD). Overall, respondents showed higher WTP for daughters (median 2000 CNY/277 USD; IQR 1000-3600 CNY/138-498 USD) than for themselves (2000 CNY/277 USD; 1000-3500 CNY/138-483 USD) or wives (2000 CNY/277 USD; 800-3000 CNY/110-414 USD) (each p < .05). Furthermore, parental WTP was higher for international vaccine and 9-valent vaccine (each p < 0.05). Between two assumed government subsidy scenarios, parental preference for 9-valent vaccine remained consistently high for daughters (approximately 24% in each scenario), whereas preference for themselves (or wives) was sensitive to payment change between the subsidy scenarios. Using a discrete choice experiment, we found domestic vaccine was commonly preferred; however, certain sociodemographic groups preferred multivalent HPV vaccines. In conclusion, the valency of HPV vaccine may influence parental decision-making for daughters, in addition to vaccine price. Our findings would facilitate tailoring the HPV immunization program in China.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Parents , Humans , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/economics , Papillomavirus Vaccines/immunology , Female , China , Cross-Sectional Studies , Child , Adolescent , Papillomavirus Infections/prevention & control , Adult , Parents/psychology , Surveys and Questionnaires , Patient Acceptance of Health Care/statistics & numerical data , Vaccination/economics , Vaccination/psychology , Vaccination/statistics & numerical data , Male , Middle Aged
5.
Hum Vaccin Immunother ; 20(1): 2368944, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38932738

ABSTRACT

This study aimed to assess the attitudes and willingness of pregnant women to receive the influenza vaccine and the factors influencing their decisions. A sample survey was conducted among pregnant women receiving prenatal care at various medical institutions in Minhang District, Shanghai, from March to June 2023. The survey included inquiries about demographic information, knowledge, and perception of influenza disease and influenza vaccine. Logistic regression models and chi-square tests were used to analyze the data. 6.9% (78/1125) of participants considered receiving the influenza vaccine during pregnancy. Participants with graduate education or above (OR = 4.632, 95%CI: 1.046-20.517), non-office workers (OR = 2.784, 95%CI: 1.560-4.970), and participants whose spouses were not office workers (OR = 0.518, 95% CI: 0.294-0.913) were significantly associated with high intent to vaccinate. Participants with superior knowledge (>30 points) exhibited greater willingness (p < .001). Participants who viewed post-influenza symptoms as mild had a significantly lower willingness to vaccinate during pregnancy (2.3%), compared to those who disagreed (p = .015). Conversely, those recognizing a heightened risk of hospitalization due to respiratory diseases in pregnant women post-influenza were significantly more inclined to vaccinate during pregnancy (8.8%) (p = .007). Participants recognizing benefits uniformly expressed willingness to receive the influenza vaccine during pregnancy (p < .001), while those perceiving barriers uniformly rejected vaccination (p < .001). Higher education, non-office worker status, and having an office worker spouse correlate with greater willingness to receive the influenza vaccine during pregnancy. Enhanced knowledge and accurate perceptions of influenza and its vaccine influenced willingness. Accumulating knowledge about influenza and its vaccine fosters accurate perceptions. Notably, overall willingness to vaccinate during pregnancy remains low, likely due to safety concerns, and lack of accurate perceptions. Targeted health education, improved communication between healthcare providers and pregnant women, and campaigns highlighting vaccine benefits for mothers and children are essential.


Subject(s)
Health Knowledge, Attitudes, Practice , Influenza Vaccines , Influenza, Human , Patient Acceptance of Health Care , Pregnant Women , Vaccination , Humans , Female , Pregnancy , China , Adult , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Pregnant Women/psychology , Patient Acceptance of Health Care/psychology , Patient Acceptance of Health Care/statistics & numerical data , Young Adult , Surveys and Questionnaires , Vaccination/psychology , Vaccination/statistics & numerical data , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/psychology , Prenatal Care , Cross-Sectional Studies , Adolescent
6.
Front Physiol ; 15: 1398735, 2024.
Article in English | MEDLINE | ID: mdl-38933361

ABSTRACT

Introduction: Fetal heart rate monitoring during labor can aid healthcare professionals in identifying alterations in the heart rate pattern. However, discrepancies in guidelines and obstetrician expertise present challenges in interpreting fetal heart rate, including failure to acknowledge findings or misinterpretation. Artificial intelligence has the potential to support obstetricians in diagnosing abnormal fetal heart rates. Methods: Employ preprocessing techniques to mitigate the effects of missing signals and artifacts on the model, utilize data augmentation methods to address data imbalance. Introduce a multi-scale long short-term memory neural network trained with a variety of time-scale data for automatically classifying fetal heart rate. Carried out experimental on both single and multi-scale models. Results: The results indicate that multi-scale LSTM models outperform regular LSTM models in various performance metrics. Specifically, in the single models tested, the model with a sampling rate of 10 exhibited the highest classification accuracy. The model achieves an accuracy of 85.73%, a specificity of 85.32%, and a precision of 85.53% on CTU-UHB dataset. Furthermore, the area under the receiver operating curve of 0.918 suggests that our model demonstrates a high level of credibility. Discussion: Compared to previous research, our methodology exhibits superior performance across various evaluation metrics. By incorporating alternative sampling rates into the model, we observed improvements in all performance indicators, including ACC (85.73% vs. 83.28%), SP (85.32% vs. 82.47%), PR (85.53% vs. 82.84%), recall (86.13% vs. 84.09%), F1-score (85.79% vs. 83.42%), and AUC(0.9180 vs. 0.8667). The limitations of this research include the limited consideration of pregnant women's clinical characteristics and disregard the potential impact of varying gestational weeks.

7.
Chem Biodivers ; : e202400752, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923373

ABSTRACT

Myricetin (1), quercetin (2), kaempferol (3) and kaempferide (4) were flavonoids with phenolic hydroxyl groups. The antioxidant and pharmacological mechanisms of them were investigated in detail. The lowest hydroxyl dissociation enthalpies of 1, 2, 3 and 4 were calculated by DFT, respectively. The hydroxyl dissociation enthalpies of the four flavonoids at the O2 site are the highest. By analyzing the intramolecular hydrogen bonds and HOMO-LUMO orbitals of the four flavonoids, the reasons for their divergence of hydroxyl dissociation enthalpies and antioxidant mechanisms were further investigated. The UV-vis and IR spectra of four flavonoids were compared. The interactions about electrostatic attraction, p-π conjugation and hydrogen bond combined the flavonoid with the target protein closely. The root mean square deviation of peroxisome proliferator-activated receptor γ combined with 1, 2 and 3 increased, while that of PPARγ combined with 4 decreased.

8.
Nat Genet ; 56(7): 1468-1481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839885

ABSTRACT

Aneuploidy is frequently detected in early human embryos as a major cause of early pregnancy failure. However, how aneuploidy affects cellular function remains elusive. Here, we profiled the transcriptomes of 14,908 single cells from 203 human euploid and aneuploid blastocysts involving autosomal and sex chromosomes. Nearly all of the blastocysts contained four lineages. In aneuploid chromosomes, 19.5% ± 1.2% of the expressed genes showed a dosage effect, and 90 dosage-sensitive domains were identified. Aneuploidy leads to prevalent genome-wide transcriptome alterations. Common effects, including apoptosis, were identified, especially in monosomies, partially explaining the lower cell numbers in autosomal monosomies. We further identified lineage-specific effects causing unstable epiblast development in aneuploidies, which was accompanied by the downregulation of TGF-ß and FGF signaling, which resulted in insufficient trophectoderm maturation. Our work provides crucial insights into the molecular basis of human aneuploid blastocysts and may shed light on the cellular interaction during blastocyst development.


Subject(s)
Aneuploidy , Blastocyst , Single-Cell Analysis , Transcriptome , Humans , Blastocyst/metabolism , Blastocyst/cytology , Single-Cell Analysis/methods , Female , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Gene Expression Profiling/methods , Pregnancy , Signal Transduction/genetics , Apoptosis/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Cell Lineage/genetics
9.
Lancet Digit Health ; 6(7): e500-e506, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38906615

ABSTRACT

BACKGROUND: Cooling towers containing Legionella spp are a high-risk source of Legionnaires' disease outbreaks. Manually locating cooling towers from aerial imagery during outbreak investigations requires expertise, is labour intensive, and can be prone to errors. We aimed to train a deep learning computer vision model to automatically detect cooling towers that are aerially visible. METHODS: Between Jan 1 and 31, 2021, we extracted satellite view images of Philadelphia (PN, USA) and New York state (NY, USA) from Google Maps and annotated cooling towers to create training datasets. We augmented training data with synthetic data and model-assisted labelling of additional cities. Using 2051 images containing 7292 cooling towers, we trained a two-stage model using YOLOv5, a model that detects objects in images, and EfficientNet-b5, a model that classifies images. We assessed the primary outcomes of sensitivity and positive predictive value (PPV) of the model against manual labelling on test datasets of 548 images, including from two cities not seen in training (Boston [MA, USA] and Athens [GA, USA]). We compared the search speed of the model with that of manual searching by four epidemiologists. FINDINGS: The model identified visible cooling towers with 95·1% sensitivity (95% CI 94·0-96·1) and a PPV of 90·1% (95% CI 90·0-90·2) in New York City and Philadelphia. In Boston, sensitivity was 91·6% (89·2-93·7) and PPV was 80·8% (80·5-81·2). In Athens, sensitivity was 86·9% (75·8-94·2) and PPV was 85·5% (84·2-86·7). For an area of New York City encompassing 45 blocks (0·26 square miles), the model searched more than 600 times faster (7·6 s; 351 potential cooling towers identified) than did human investigators (mean 83·75 min [SD 29·5]; mean 310·8 cooling towers [42·2]). INTERPRETATION: The model could be used to accelerate investigation and source control during outbreaks of Legionnaires' disease through the identification of cooling towers from aerial imagery, potentially preventing additional disease spread. The model has already been used by public health teams for outbreak investigations and to initialise cooling tower registries, which are considered best practice for preventing and responding to outbreaks of Legionnaires' disease. FUNDING: None.


Subject(s)
Deep Learning , Disease Outbreaks , Legionnaires' Disease , Humans , Disease Outbreaks/prevention & control , Legionnaires' Disease/prevention & control , Legionnaires' Disease/epidemiology , Legionnaires' Disease/diagnosis , Air Conditioning , Philadelphia/epidemiology , New York/epidemiology , Legionella , Satellite Imagery
10.
Front Endocrinol (Lausanne) ; 15: 1383993, 2024.
Article in English | MEDLINE | ID: mdl-38836227

ABSTRACT

Background: Stress hyperglycemia ratio (SHR) has shown a predominant correlation with transient adverse events in critically ill patients. However, there remains a gap in comprehensive research regarding the association between SHR and mortality among patients experiencing cardiac arrest and admitted to the intensive care unit (ICU). Methods: A total of 535 patients with their initial ICU admission suffered cardiac arrest, according to the American Medical Information Mart for Intensive Care (MIMIC)-IV database. Patients were stratified into four categories based on quantiles of SHR. Multivariable Cox regression models were used to evaluate the association SHR and mortality. The association between SHR and mortality was assessed using multivariable Cox regression models. Subgroup analyses were conducted to determine whether SHR influenced ICU, 1-year, and long-term all-cause mortality in subgroups stratified according to diabetes status. Results: Patients with higher SHR, when compared to the reference quartile 1 group, exhibited a greater risk of ICU mortality (adjusted hazard ratio [aHR] = 3.029; 95% CI: 1.802-5.090), 1-year mortality (aHR = 3.057; 95% CI: 1.885-4.958), and long-term mortality (aHR = 3.183; 95% CI: 2.020-5.015). This association was particularly noteworthy among patients without diabetes, as indicated by subgroup analysis. Conclusion: Elevated SHR was notably associated with heightened risks of ICU, 1-year, and long-term all-cause mortality among cardiac arrest patients. These findings underscore the importance of considering SHR as a potential prognostic factor in the critical care management of cardiac arrest patients, warranting further investigation and clinical attention.


Subject(s)
Databases, Factual , Heart Arrest , Hyperglycemia , Intensive Care Units , Humans , Male , Female , Heart Arrest/mortality , Heart Arrest/blood , Hyperglycemia/mortality , Hyperglycemia/blood , Aged , Middle Aged , Intensive Care Units/statistics & numerical data , Prognosis , United States/epidemiology
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167303, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878831

ABSTRACT

Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.

12.
J Virol ; : e0076924, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829138

ABSTRACT

Highly pathogenic viruses from family Phenuiviridae, which are mainly transmitted by arthropods, have intermittently sparked epidemics worldwide. In particular, tick-borne bandaviruses, such as severe fever with thrombocytopenia syndrome virus (SFTSV), continue to spread in mountainous areas, resulting in an average mortality rate as high as 10.5%, highlighting the urgency and importance of vaccine development. Here, an mRNA vaccine developed based on the full-length SFTSV glycoprotein, containing both the receptor-binding domain and the fusion domain, was shown to confer complete protection against SFTSV at a very low dose by triggering a type 1 helper T cell-biased cellular immune response in rodents. Moreover, the vaccine candidate elicited long-term immunity and protection against SFTSV for at least 5 months. Notably, it provided complete cross-protection against other bandaviruses, such as the Heartland virus and Guertu virus, in lethal challenge models. Further research revealed that the conserved epitopes among bandaviruses within the full-length SFTSV glycoprotein may facilitate broad-spectrum protection mediated by the cellular immune response. Collectively, these findings demonstrate that the full-length SFTSV glycoprotein mRNA vaccine is a promising vaccine candidate for SFTSV and other bandaviruses, and provide guidance for the development of broad-spectrum vaccines from conserved antigens and epitopes. IMPORTANCE: Tick-borne bandaviruses, such as SFTSV and Heartland virus, sporadically trigger outbreaks in addition to influenza viruses and coronaviruses, yet there are no specific vaccines or therapeutics against them. mRNA vaccine technology has advantages in terms of enabling in situ expression and triggering cellular immunity, thus offering new solutions for vaccine development against intractable viruses, such as bandaviruses. In this study, we developed a novel vaccine candidate for SFTSV by employing mRNA vaccination technology and using a full-length glycoprotein as an antigen target. This candidate vaccine confers complete and durable protection against SFTSV at a notably low dose while also providing cross-protection against Heartland virus and Guertu virus. This study highlights the prospective value of full-length SFTSV-glycoprotein-based mRNA vaccines and suggests a potential strategy for broad-spectrum bandavirus vaccines.

13.
PLoS Pathog ; 20(6): e1012287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843304

ABSTRACT

The kinetics of type I interferon (IFN) induction versus the virus replication compete, and the result of the competition determines the outcome of the infection. Chaperone proteins that involved in promoting the activation kinetics of PRRs rapidly trigger antiviral innate immunity. We have previously shown that prior to the interaction with MAVS to induce type I IFN, 14-3-3η facilitates the oligomerization and intracellular redistribution of activated MDA5. Here we report that the cleavage of 14-3-3η upon MDA5 activation, and we identified Caspase-3 activated by MDA5-dependent signaling was essential to produce sub-14-3-3η lacking the C-terminal helix (αI) and tail. The cleaved form of 14-3-3η (sub-14-3-3η) could strongly interact with MDA5 but could not support MDA5-dependent type I IFN induction, indicating the opposite functions between the full-length 14-3-3η and sub-14-3-3η. During human coronavirus or enterovirus infections, the accumulation of sub-14-3-3η was observed along with the activation of Caspase-3, suggesting that RNA viruses may antagonize 14-3-3η by promoting the formation of sub-14-3-3η to impair antiviral innate immunity. In conclusion, sub-14-3-3η, which could not promote MDA5 activation, may serve as a negative feedback to return to homeostasis to prevent excessive type I IFN production and unnecessary inflammation.


Subject(s)
14-3-3 Proteins , Caspase 3 , Interferon-Induced Helicase, IFIH1 , 14-3-3 Proteins/metabolism , Humans , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Caspase 3/metabolism , Immunity, Innate , HEK293 Cells , Animals , Signal Transduction , Interferon Type I/metabolism
14.
Mol Syst Biol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877321

ABSTRACT

Bacteria in nature often form surface-attached communities that initially comprise distinct subpopulations, or patches. For pathogens, these patches can form at infection sites, persist during antibiotic treatment, and develop into mature biofilms. Evidence suggests that patches can emerge due to heterogeneity in the growth environment and bacterial seeding, as well as cell-cell signaling. However, it is unclear how these factors contribute to patch formation and how patch formation might affect bacterial survival and evolution. Here, we demonstrate that a 'rich-get-richer' mechanism drives patch formation in bacteria exhibiting collective survival (CS) during antibiotic treatment. Modeling predicts that the seeding heterogeneity of these bacteria is amplified by local CS and global resource competition, leading to patch formation. Increasing the dose of a non-eradicating antibiotic treatment increases the degree of patchiness. Experimentally, we first demonstrated the mechanism using engineered Escherichia coli and then demonstrated its applicability to a pathogen, Pseudomonas aeruginosa. We further showed that the formation of P. aeruginosa patches promoted the evolution of antibiotic resistance. Our work provides new insights into population dynamics and resistance evolution during surface-attached bacterial growth.

15.
PLoS Comput Biol ; 20(6): e1012185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829926

ABSTRACT

Multi-factor screenings are commonly used in diverse applications in medicine and bioengineering, including optimizing combination drug treatments and microbiome engineering. Despite the advances in high-throughput technologies, large-scale experiments typically remain prohibitively expensive. Here we introduce a machine learning platform, structure-augmented regression (SAR), that exploits the intrinsic structure of each biological system to learn a high-accuracy model with minimal data requirement. Under different environmental perturbations, each biological system exhibits a unique, structured phenotypic response. This structure can be learned based on limited data and once learned, can constrain subsequent quantitative predictions. We demonstrate that SAR requires significantly fewer data comparing to other existing machine-learning methods to achieve a high prediction accuracy, first on simulated data, then on experimental data of various systems and input dimensions. We then show how a learned structure can guide effective design of new experiments. Our approach has implications for predictive control of biological systems and an integration of machine learning prediction and experimental design.


Subject(s)
Computational Biology , Machine Learning , Computational Biology/methods , Models, Biological , Computer Simulation , Algorithms , Humans , Regression Analysis
16.
Sci Total Environ ; 946: 174295, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936732

ABSTRACT

As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.


Subject(s)
Climate Change , Environmental Monitoring , Grassland , Machine Learning , Nitrogen , Phosphorus , Soil , Soil/chemistry , Nitrogen/analysis , Phosphorus/analysis , Environmental Monitoring/methods , Nutrients/analysis , Ecosystem
18.
Asian J Androl ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38722110

ABSTRACT

ABSTRACT: Ejaculation is regulated by the central nervous system. However, the central pathophysiology of primary intravaginal anejaculation (PIAJ) is unclear. The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ. A total of 20 PIAJ patients and 16 healthy controls (HCs) were enrolled from September 2020 to September 2022 in the Department of Andrology, Nanjing Drum Tower Hospital (Nanjing, China). Magnetic resonance imaging data were acquired from all participants and then were preprocessed. The measures of fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) were calculated and compared between the groups. PIAJ patients showed increased fALFF values in the left precuneus compared with HCs. Additionally, PIAJ patients showed increased ReHo values in the left precuneus, left postcentral gyrus, left superior occipital gyrus, left calcarine fissure, right precuneus, and right middle temporal gyrus, and decreased ReHo values in the left inferior parietal gyrus, compared with HCs. Finally, brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions, which included the frontal, parietal, temporal, and occipital regions, compared with HCs. In conclusion, increased regional brain activity in the parietal, temporal, and occipital regions, and increased FC between these brain regions, may be associated with PIAJ occurrence.

19.
Opt Lett ; 49(10): 2825-2828, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748171

ABSTRACT

Based on the longitudinal manipulation of polarization, a special vector optical beam (VOB) with customized polarization variation in propagation direction can be generated, whose properties and applications remain to be studied. Here, the self-healing propagation behaviors of the longitudinally varying VOB after an opaque object are investigated, and the localized polarization responses on the object distance are revealed. On this basis, characteristic parameters are defined to measure the distance of object, achieving a minimum relative error of 0.63% in a longitudinal range of 300 mm. Besides, the correlations and uncoupling methods of object distance and size are discussed. Our studies open new ways to use the structural properties of VOB and may be instructive for laser measurement.

20.
Adv Sci (Weinh) ; : e2308325, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790144

ABSTRACT

Macrophages play pivotal roles in the regulation of inflammatory responses and tissue repair, making them a prime target for inflammation alleviation. However, the accurate and efficient macrophages targeting is still a challenging task. Motivated by the efficient and specific removal of apoptotic cells by macrophages efferocytosis, a novel biomimetic liposomal system called Effero-RLP (Efferocytosis-mediated Red blood cell hybrid Liposomes) is developed which incorporates the membrane of apoptotic red blood cells (RBCs) with liposomes for the purpose of highly efficient macrophages targeting. Rosiglitazone (ROSI), a PPARγ agonist known to attenuate macrophage inflammatory responses, is encapsulated into Effero-RLP as model drug to regulate macrophage functions in DSS-induced colitis mouse model. Intriguingly, the Effero-RLP exhibits selective and efficient uptake by macrophages, which is significantly inhibited by the efferocytosis blocker Annexin V. In animal models, the Effero-RLP demonstrates rapid recognition by macrophages, leading to enhanced accumulation at inflammatory sites. Furthermore, ROSI-loaded Effero-RLP effectively alleviates inflammation and protects colon tissue from injury in the colitis mouse model, which is abolished by deletion of macrophages from mice model. In conclusion, the study highlights the potential of macrophage targeting using efferocytosis biomimetic liposomes. The development of Effero-RLP presents novel and promising strategies for alleviating inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...