Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.284
Filter
1.
Sci Rep ; 14(1): 16455, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014184

ABSTRACT

Diffusion Kurtosis Imaging (DKI)-derived metrics are recognized as indicators of maturation in neonates with low-grade germinal matrix and intraventricular hemorrhage (GMH-IVH). However, it is not yet known if these factors are associated with neurodevelopmental outcomes. The objective of this study was to acquire DKI-derived metrics in neonates with low-grade GMH-IVH, and to demonstrate their association with later neurodevelopmental outcomes. In this prospective study, neonates with low-grade GMH-IVH and control neonates were recruited, and DKI were performed between January 2020 and March 2021. These neonates underwent the Bayley Scales of Infant Development test at 18 months of age. Mean kurtosis (MK), radial kurtosis (RK) and gray matter values were measured. Spearman correlation analyses were conducted for the measured values and neurodevelopmental outcome scores. Forty controls (18 males, average gestational age (GA) 30 weeks ± 1.3, corrected GA at MRI scan 38 weeks ± 1) and thirty neonates with low-grade GMH-IVH (13 males, average GA 30 weeks ± 1.5, corrected GA at MRI scan 38 weeks ± 1). Neonates with low-grade GMH-IVH exhibited lower MK and RK values in the PLIC and the thalamus (P < 0.05). The MK value in the thalamus was associated with Mental Development Index (MDI) (r = 0.810, 95% CI 0.695-0.13; P < 0.001) and Psychomotor Development Index (PDI) (r = 0.852, 95% CI 0.722-0.912; P < 0.001) scores. RK value in the caudate nucleus significantly and positively correlated with MDI (r = 0.496, 95% CI 0.657-0.933; P < 0.001) and PDI (r = 0.545, 95% CI 0.712-0.942; P < 0.001) scores. The area under the curve (AUC) were used to assess diagnostic performance of MK and RK in thalamus (AUC = 0.866, 0.787) and caudate nucleus (AUC = 0.833, 0.671) for predicting neurodevelopmental outcomes. As quantitative neuroimaging markers, MK in thalamus and RK in caudate nucleus may help predict neurodevelopmental outcomes in neonates with low-grade GMH-IVH.


Subject(s)
Diffusion Tensor Imaging , Humans , Male , Infant, Newborn , Female , Diffusion Tensor Imaging/methods , Prospective Studies , Cerebral Hemorrhage/diagnostic imaging , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/etiology , Infant , Cerebral Intraventricular Hemorrhage/diagnostic imaging , Gestational Age , Child Development , Gray Matter/diagnostic imaging , Gray Matter/pathology
2.
Discov Oncol ; 15(1): 287, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014263

ABSTRACT

Hepatocellular carcinoma (HCC) has high incidence and mortality rates worldwide. Damaged mitochondria are characterized by the overproduction of reactive oxygen species (ROS), which can promote cancer development. The prognostic value of the interplay between mitochondrial function and oxidative stress in HCC requires further investigation. Gene expression data of HCC samples were collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). We screened prognostic oxidative stress mitochondria-related (OSMT) genes at the bulk transcriptome level. Based on multiple machine learning algorithms, we constructed a consensus oxidative stress mitochondria-related signature (OSMTS), which contained 26 genes. In addition, we identified six of these genes as having a suitable prognostic value for OSMTS to reduce the difficulty of clinical application. Univariate and multivariate analyses verified the OSMTS as an independent prognostic factor for overall survival (OS) in HCC patients. The OSMTS-related nomogram demonstrated to be a powerful tool for the clinical diagnosis of HCC. We observed differences in biological function and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. The highest expression of the OSMTS was detected in hepatocytes at the single-cell transcriptome level. Hepatocytes in the high- and low-risk groups differed significantly in terms of biological function and intercellular communication. Moreover, at the spatial transcriptome level, high expression of OSMTS was mainly in regions enriched in hepatocytes and B cells. Potential drugs targeting specific risk subgroups were identified. Our study revealed that the OSMTS can serve as a promising tool for prognosis prediction and precise intervention in HCC patients.

3.
Curr Res Food Sci ; 9: 100794, 2024.
Article in English | MEDLINE | ID: mdl-39021608

ABSTRACT

Rice aroma, one of the most important qualities of rice, was the comprehensive result of volatiles in rice and human sense. In this study, the main volatile compounds in rice were analyzed by using gas chromatography-mass spectrometry and gas chromatography-olfactometry, and their correlations with sensory score were investigated. A total of eighty-five volatiles were found in rice samples. By combining odor activity value and correlation analysis, nine volatiles were considered as potential characteristic volatiles in rice aroma, namely hexanal, 2-pentylfuran, octanal, 2-acetyl-1-pyrroline (2-AP), 1-octen-3-ol, trans-2-octenal, decanal, trans-2-nonenal and trans, trans-2,4-decadienal. It was found that the volatiles negatively correlated with sensory scores were positively correlated with hexanal. It indicated that hexanal might be a representative of the negative volatiles of rice aroma. The effects of the nine potential characteristic volatiles on rice aroma were investigated by using sensory analysis. The results showed that the odor intensity and preference level of 2-AP, hexanal, and 1-octen-3-ol were significantly affected by the content. Furthermore, the aroma of cooked rice was significantly different after adding 2-AP, hexanal or trans, trans-2,4-decadienal. Rice aroma was increased by adding 2-AP and deteriorated by adding hexanal or trans, trans-2,4-decadienal, indicating that 2-AP contributed positively to rice aroma while hexanal and trans, trans-2,4-decadienal contributed negatively to rice aroma. Hexanal, 2-AP, and trans, trans-2,4-decadienal were suggested to be the key characteristic volatiles for future aroma evaluation.

4.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976012

ABSTRACT

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Subject(s)
Aquaporin 4 , Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Volatile , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Mice , Tryptophan/metabolism , Tryptophan/pharmacology , Female , Signal Transduction/drug effects , Aquaporin 4/metabolism , Aquaporin 4/genetics , Gastrointestinal Microbiome/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
5.
Article in English | MEDLINE | ID: mdl-38970420

ABSTRACT

SIGNIFICANCE: Herbal medicines demonstrate clinical promise for cancer treatment. Protein post translational modifications (PTMs) regulate tumorigenesis and cancer progression. While PTMs contributing to cancer are well-studied, the precise mechanisms and defined targets of herbal medicines on PTM-associated carcinogenesis remain unclear. Hence, comprehensively understanding how PTMs regulate cancer hallmarks is crucial to elucidate the pharmacological mechanisms of herbal medicines for cancer treatment. RECENT ADVANCES: Advanced development in highly sensitive mass spectrometry (MS)-based techniques has helped utilize PTM-focused studies on cancers. Accumulating evidence has been achieved in laboratory to ascertain the biological mechanism of herbal medicines in cancer therapy. Implication of the strong association between cancer and PTM makes new perspective to comprehend the intricate dialogues between herbal medicines and cellular contexts. CRITICAL ISSUES: Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating PTM implicated in cell signaling, apoptosis and transcriptional regulation function, and the possible cellular signaling, have provided important information about the mechanism of many herbal therapies. Continued optimization of proteomic strategies for PTM analysis in herbal medicines are also discussed. FUTURE DIRECTIONS: Rigorous evaluations of herbal medicines and the chemoproteomic strategies are necessary to explore the aberrant regulation of PTM dynamics contributed to the cancer development and herbal associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents.

6.
Sci Data ; 11(1): 775, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003271

ABSTRACT

Kmeria septentrionalis is a critically endangered tree endemic to Guangxi, China, and is listed on the International Union for Conservation of Nature's Red List. The lack of genetic information and high-quality genome data has hindered conservation efforts and studies on this species. In this study, we present a chromosome-level genome assembly of K. septentrionalis. The genome was initially assembled to be 2.57 Gb, with a contig N50 of 11.93 Mb. Hi-C guided genome assembly allowed us to anchor 98.83% of the total length of the initial contigs onto 19 pseudochromosomes, resulting in a scaffold N50 of 135.08 Mb. The final chromosome-level genome, spaning 2.54 Gb, achieved a BUSCO completeness of 98.9% and contained 1.67 Gb repetitive elements and 35,927 coding genes. This high-quality genome assembly provides a valuable resource for understanding the genetic basis of conservation-related traits and biological properties of this endangered tree species. Furthermore, it lays a critical foundation for evolutionary studies within the Magnoliaceae family.


Subject(s)
Endangered Species , Genome, Plant , Chromosomes, Plant , China , Trees/genetics
7.
Phytomedicine ; 132: 155847, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38996505

ABSTRACT

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.

8.
Circulation ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056171

ABSTRACT

BACKGROUND: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear. METHODS: We assessed DDX5 expression in human failing hearts and a mouse HF model. To study the function of DDX5 in heart, we engineered cardiomyocyte-specific Ddx5 knockout mice. We overexpressed DDX5 in cardiomyocytes using adeno-associated virus serotype 9 and performed transverse aortic constriction to establish the murine HF model. The mechanisms underlined were subsequently investigated using immunoprecipitation-mass spectrometry, RNA-sequencing, alternative splicing analysis, and RNA immunoprecipitation sequencing. RESULTS: We screened transcriptome databases of murine HF and human dilated cardiomyopathy samples and found that DDX5 was significantly downregulated in both. Cardiomyocyte-specific deletion of Ddx5 resulted in HF with reduced cardiac function, an enlarged heart chamber, and increased fibrosis in mice. DDX5 overexpression improved cardiac function and protected against adverse cardiac remodeling in mice with transverse aortic constriction-induced HF. Furthermore, proteomics revealed that DDX5 is involved in RNA splicing in cardiomyocytes. We found that DDX5 regulated the aberrant splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CamkIIδ), thus preventing the production of CaMKIIδA, which phosphorylates L-type calcium channel by serine residues of Cacna1c, leading to impaired Ca2+ homeostasis. In line with this, we found increased intracellular Ca2+ transients and increased sarcoplasmic reticulum Ca2+ content in DDX5-depleted cardiomyocytes. Using adeno-associated virus serotype 9 knockdown of CaMKIIδA partially rescued the cardiac dysfunction and HF in Ddx5 knockout mice. CONCLUSIONS: These findings reveal a role for DDX5 in maintaining calcium homeostasis and cardiac function by regulating alternative splicing in cardiomyocytes, identifying the DDX5 as a potential target for therapeutic intervention in HF.

9.
Transl Neurodegener ; 13(1): 35, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049095

ABSTRACT

BACKGROUND: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation. METHODS: We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023. RESULTS: QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples. CONCLUSION: We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Humans , Animals , Mice , Female , Male , Aged , Middle Aged , Brain/metabolism , Brain/pathology , Sensitivity and Specificity , Skin/metabolism , Skin/pathology , Aged, 80 and over
10.
Transl Psychiatry ; 14(1): 270, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956035

ABSTRACT

Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Sleep Deprivation , Sleep, REM , Humans , Male , Sleep Deprivation/physiopathology , Sleep Deprivation/diagnostic imaging , Sleep, REM/physiology , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology
11.
Adv Sci (Weinh) ; : e2400929, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900070

ABSTRACT

To elucidate the brain-wide information interactions that vary and contribute to individual differences in schizophrenia (SCZ), an information-resolved method is employed to construct individual synergistic and redundant interaction matrices based on regional pairwise BOLD time-series from 538 SCZ and 540 normal controls (NC). This analysis reveals a stable pattern of regionally-specific synergy dysfunction in SCZ. Furthermore, a hierarchical Bayesian model is applied to deconstruct the patterns of whole-brain synergy dysfunction into three latent factors that explain symptom heterogeneity in SCZ. Factor 1 exhibits a significant positive correlation with Positive and Negative Syndrome Scale (PANSS) positive scores, while factor 3 demonstrates significant negative correlations with PANSS negative and general scores. By integrating the neuroimaging data with normative gene expression information, this study identifies that each of these three factors corresponded to a subset of the SCZ risk gene set. Finally, by combining data from NeuroSynth and open molecular imaging sources, along with a spatially heterogeneous mean-field model, this study delineates three SCZ synergy factors corresponding to distinct symptom profiles and implicating unique cognitive, neurodynamic, and neurobiological mechanisms.

12.
Poult Sci ; 103(8): 103915, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38917611

ABSTRACT

This study determined metabolizable energy (ME) and developed ME prediction equations for broilers based on chemical composition of soybean meal (SBM) and rapeseed meal (RSM) using a 2 × 10 factorial arrangement of age (11 to 14 or 25 to 28 d of age) and 10 sources of each ingredient. Each treatment contained 6 replicates of 8 broilers. The ME values were determined by total collection of feces and urine. Principal components analysis (PCA) of the chemical composition clearly revealed distinct differences in SBM and RSM based on a principal components (PC) score plot. The nitrogen-corrected apparent metabolizable energy (AMEn) of SBM was higher in broilers from 25 to 28 than 11 to 14 d of age (P = 0.013). Interactions between broiler age and ingredient source affected apparent metabolizable energy (AME) of SBM and ME of RSM (P < 0.05). The ME of SBM in 11 to 14 and 25 to 28-day-old broilers were estimated by crude protein (CP) content (R2≥ 0.782; SEP ≤ 83 kcal/kg DM; P < 0.001). The AME and AMEn of RSM in 11 to 14-day-old broilers were estimated by ether extract (EE), ash and acid detergent fiber (ADF) (R2 = 0.897, SEP = 106 kcal/kg DM; P = 0.002), and by EE and ash (R2 = 0.885, SEP = 98 kcal/kg DM; P = 0.001), respectively. The AME and AMEn of RSM in 25 to 28-day-old broilers were estimated by ash and ADF (R2 = 0.925, SEP = 104 kcal/kg DM; P < 0.001) and by ash and neutral detergent fiber (NDF) (R2 = 0.921, SEP = 91 kcal/kg DM; P < 0.001), respectively. These results indicate that ME of these 2 plant protein ingredients are affected interactively by chemical composition and age of broilers. This study developed robust, age-specific prediction equations of ME for broilers based on chemical composition for SBM and RSM. Overall, ME values can be predicted from CP content for SBM, or EE, ash, ADF, and NDF for RSM.

13.
Sleep ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829819

ABSTRACT

STUDY OBJECTIVES: To investigate the relationships between longitudinal changes in sleep stages and the risk of cognitive decline in older men. METHODS: This study included 978 community-dwelling older men who participated in the first (2003-2005) and second (2009-2012) sleep ancillary study visits of the Osteoporotic Fractures in Men Study. We examined the longitudinal changes in sleep stages at the initial and follow-up visits, and the association with concurrent clinically relevant cognitive decline during the 6.5-year follow-up. RESULTS: Men with low to moderate (quartile 2, Q2) and moderate increase (Q3) in N1 sleep percentage had a reduced risk of cognitive decline on the Modified Mini-Mental State Examination compared to those with a substantial increase (Q4) in N1 sleep percentage. Additionally, men who experienced a low to moderate (Q2) increase in N1 sleep percentage had a lower risk of cognitive decline on the Trails B compared with men in the reference group (Q4). Furthermore, men with the most pronounced reduction (Q1) in N2 sleep percentage had a significantly higher risk of cognitive decline on the Trails B compared to those in the reference group (Q4). No significant association was found between changes in N3 and rapid eye movement sleep and the risk of cognitive decline. CONCLUSIONS: Our results suggested that a relatively lower increase in N1 sleep showed a reduced risk of cognitive decline. However, a pronounced decrease in N2 sleep was associated with concurrent cognitive decline. These findings may help identify older men at risk of clinically relevant cognitive decline.

14.
Chest ; 165(6): e163-e167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852972

ABSTRACT

This novel report presents the first known case, to our knowledge, of a 16-year-old male patient who experienced intraventricular thrombosis and pulmonary embolism after a Nuss procedure for pectus excavatum, attributed to chronic bar displacement. Two years after the operation, the patient experienced post-exercise cough and hemoptysis, which led to his admission. Imaging revealed pulmonary embolism, thrombosis in the right ventricular outflow tract, and lung infiltrative lesions. We hypothesize that the chronic bar displacement led to its embedment in the right ventricle, resulting in thrombus formation, which subsequently contributed to partial pulmonary embolism. Surgery revealed the bars' intrusion into the right ventricle and lung. This case highlights the risk of severe complications from bar displacement in the Nuss procedure, which necessitates long-term follow-up evaluation, caution against strenuous activities after surgery, and use of thoracoscopic guidance during bar implantation and removal. It underscores the importance of vigilant evaluation for late-stage complications in patients with respiratory distress or thrombosis after a Nuss procedure.


Subject(s)
Funnel Chest , Pulmonary Embolism , Thrombosis , Humans , Pulmonary Embolism/etiology , Pulmonary Embolism/diagnosis , Male , Adolescent , Funnel Chest/surgery , Thrombosis/etiology , Thrombosis/diagnostic imaging , Thrombosis/diagnosis , Heart Ventricles/diagnostic imaging , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Tomography, X-Ray Computed
16.
Brain Sci ; 14(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928593

ABSTRACT

BACKGROUND: The study aimed to examine the bidirectional relationship between sarcopenia and depressive symptoms in a national, community-based cohort study, despite the unclear temporal sequence demonstrated previously. METHODS: Data were derived from four waves (2011 baseline and 2013, 2015, and 2018 follow-ups) of the China Health and Retirement Longitudinal Study (CHARLS). A total of 17,708 participants aged 45 years or older who had baseline data on both sarcopenia status and depressive symptoms in 2011 were included in the study. For the two cohort analyses, a total of 8092 adults without depressive symptoms and 11,292 participants without sarcopenia in 2011 were included. Sarcopenia status was defined according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019) criteria. Depressive symptoms were defined as a score of 20 or higher on the 10-item Center for Epidemiologic Studies Depressive Scale (CES-D-10). Cox proportional hazard regression models were conducted to examine the risk of depressive symptoms and sarcopenia risk, while cross-lagged panel models were used to examine the temporal sequence between depressive symptoms and sarcopenia over time. RESULTS: During a total of 48,305.1 person-years follow-up, 1262 cases of incident depressive symptoms were identified. Sarcopenia exhibited a dose-response relationship with a higher risk of depressive symptoms (HR = 1.7, 95%CI: 1.2-2.3 for sarcopenia, and HR = 1.5, 95%CI: 1.2-1.8 for possible sarcopenia, p trend < 0.001). In the second cohort analysis, 240 incident sarcopenia cases were identified over 39,621.1 person-years. Depressive symptoms (HR = 1.5, 95%CI: 1.2-2.0) are significantly associated with a higher risk of developing sarcopenia after multivariable adjustment (p < 0.001, Cross-lagged panel analyses demonstrated that depressive symptoms were associated with subsequent sarcopenia (ß = 0.003, p < 0.001). Simultaneously, baseline sarcopenia was also associated with subsequent depressive symptoms (ß = 0.428, p < 0.001). CONCLUSION: This study identified a bidirectional relationship between depressive symptoms and sarcopenia. It seems more probable that baseline sarcopenia is associated with subsequent depressive symptoms in a stronger pattern than the reverse pathway. The interlinkage indicated that maintaining normal muscle mass and strength may serve as a crucial intervention strategy for alleviating mood disorders.

17.
Chin Med Sci J ; 39(2): 131-139, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38862406

ABSTRACT

Brain-computer interface (BCI) technology is rapidly advancing in medical research and application. As an emerging biomedical engineering technology, it has garnered significant attention in the clinical research of brain disease diagnosis and treatment, neurological rehabilitation, and mental health. However, BCI also raises several challenges and ethical concerns in clinical research. In this article, the authors investigate and discuss three aspects of BCI in medicine and healthcare: the state of international ethical governance, multidimensional ethical challenges pertaining to BCI in clinical research, and suggestive concerns for ethical review. Despite the great potential of frontier BCI research and development in the field of medical care, the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI. To ensure "responsible innovation" in BCI research in healthcare and medicine, the creation of an ethical global governance framework and system, along with special guidelines for cutting-edge BCI research in medicine, is suggested.


Subject(s)
Brain-Computer Interfaces , Humans , Biomedical Research/ethics , Brain-Computer Interfaces/ethics , Ethical Review
18.
Int J Biol Macromol ; 275(Pt 1): 133425, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936582

ABSTRACT

Yeast ß-glucan (BYG) possesses extremely low solubility that has limited its applications. In this study, we hydrolyzed BYG using snail enzyme to obtain hydrolyzed yeast ß-glucan (HBYG) with desirable water solubility and hypoglycemic activity. On the basis of HBYG, HBYG­chromium(III) complex (HBYG-Cr) was synthesized. The molecular weight of the complex was 4.41 × 104 Da, and the content of trivalent chromium was 8.95 %. The hydroxyl groups of HBYG participated in the coordination and formed the chromium complex. The space conformations of HBYG exhibited remarkable changes after complex formation. HBYG-Cr existed mainly in an amorphous state and presented good dispersibility, and the surface was uneven. The hypoglycemic activity of HBYG-Cr was studied in db/db and C57 mice. The results showed that HBYG-Cr had good hypoglycemic activity. Histopathological studies demonstrated that the liver, kidney, pancreas, and skeletal muscle in the treatment group were significantly improved compared with those in the diabetic model group. The sub-acute toxicity of HBYG-Cr was studied in KM mice and the results indicated that the complex did not cause adverse reactions or toxic side effects. This study broadened the application of yeast ß-glucan and provided an important reference for the development of hypoglycemic functional foods and drugs.

19.
Inorg Chem ; 63(27): 12624-12634, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38910548

ABSTRACT

Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Screening Assays, Antitumor , Mefenamic Acid , Silver , Humans , Silver/chemistry , Silver/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mefenamic Acid/pharmacology , Mefenamic Acid/chemistry , Apoptosis/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Cell Proliferation/drug effects , Nitrogen/chemistry , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Cell Line, Tumor
20.
Front Neurosci ; 18: 1365141, 2024.
Article in English | MEDLINE | ID: mdl-38919907

ABSTRACT

Introduction: Sensorineural hearing loss (SNHL) can arise from a diverse range of congenital and acquired factors. Detecting it early is pivotal for nurturing speech, language, and cognitive development in children with SNHL. In our study, we utilized synthetic magnetic resonance imaging (SyMRI) to assess alterations in both gray and white matter within the brains of children affected by SNHL. Methods: The study encompassed both children diagnosed with SNHL and a control group of children with normal hearing {1.5-month-olds (n = 52) and 3-month-olds (n = 78)}. Participants were categorized based on their auditory brainstem response (ABR) threshold, delineated into normal, mild, moderate, and severe subgroups.Clinical parameters were included and assessed the correlation with SNHL. Quantitative analysis of brain morphology was conducted using SyMRI scans, yielding data on brain segmentation and relaxation time.Through both univariate and multivariate analyses, independent factors predictive of SNHL were identified. The efficacy of the prediction model was evaluated using receiver operating characteristic (ROC) curves, with visualization facilitated through the utilization of a nomogram. It's important to note that due to the constraints of our research, we worked with a relatively small sample size. Results: Neonatal hyperbilirubinemia (NH) and children with inner ear malformation (IEM) were associated with the onset of SNHL both at 1.5 and 3-month groups. At 3-month group, the moderate and severe subgroups exhibited elevated quantitative T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) compared to the normal group. Additionally, WMV, WMF, MYF, and MYV were significantly reduced relative to the normal group. Additionally, SNHL-children with IEM had high T1 values in IC, and LL and reduced WMV, WMF, MYV and MYF values as compared with SNHL-children without IEM at 3-month group. LL-T1 and WMF were independent risk factors associated with SNHL. Consequently, a prediction model was devised based on LL-T1 and WMF. ROC for training set, validation set and external set were 0.865, 0.806, and 0.736, respectively. Conclusion: The integration of T1 quantitative values and brain volume segmentation offers a valuable tool for tracking brain development in children affected by SNHL and assessing the progression of the condition's severity.

SELECTION OF CITATIONS
SEARCH DETAIL
...