Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Biomaterials ; 311: 122687, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941683

ABSTRACT

Obesity is a major public burden on the working population and induces chronic diseases. Its treatment often requires long-term medication, which makes patient compliance difficult. In this study, we reported the value of HORN-MN, which comprised a fast-soluble hyaluronic acid microneedle matrix and a weak acid-degradable oleanolic acid dimer of rosiglitazone nanoparticles. The results showed that the microneedles easily punctured the stratum corneum and dissolved in the dermis of the abdominal wall within 5 min, followed by the release of rosiglitazone nanoparticles. Thereafter, the nanoparticles were endocytosed by macrophages and white adipocytes, then degraded to oleanolic acid in the lysosomes, thereby, releasing rosiglitazone. Oleanolic acid significantly improved the inflammatory status of obese adipose tissue and promoted white adipocyte browning, and rosiglitazone significantly potentiated WAC browning. Accordingly, the patch demonstrated a remarkable obesity-reducing efficacy in mice. In conclusion, this study developed a quick paster type of soluble rosiglitazone nanoparticle microneedle for the treatment of obesity. This patch can be suitable for working people, with an evident obesity-reducing efficacy but no effect on skin integrity despite multiple administrations.

2.
Bioact Mater ; 34: 466-481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38292412

ABSTRACT

Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.

3.
Adv Drug Deliv Rev ; 204: 115131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977338

ABSTRACT

The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.


Subject(s)
Nanoparticles , Nanostructures , Humans , Nanostructures/therapeutic use , Drug Delivery Systems/methods , Drug Carriers , Biological Transport , Surface Properties , Nanoparticles/metabolism
4.
Adv Drug Deliv Rev ; 203: 115134, 2023 12.
Article in English | MEDLINE | ID: mdl-37926218

ABSTRACT

Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.


Subject(s)
Vaccines, Virus-Like Particle , Viruses , Humans , Pharmaceutical Preparations , Drug Delivery Systems , Antigens
5.
Nanomicro Lett ; 15(1): 197, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572220

ABSTRACT

Gene therapy offers potentially transformative strategies for major human diseases. However, one of the key challenges in gene therapy is developing an effective strategy that could deliver genes into the specific tissue. Here, we report a novel virus-like nanoparticle, the bioorthgonal engineered virus-like recombinant biosome (reBiosome), for efficient gene therapies of cancer and inflammatory diseases. The mutant virus-like biosome (mBiosome) is first prepared by site-specific codon mutation for displaying 4-azido-L-phenylalanine on vesicular stomatitis virus glycoprotein of eBiosome at a rational site, and the reBiosome is then prepared by clicking weak acid-responsive hydrophilic polymer onto the mBiosome via bioorthogonal chemistry. The results show that the reBiosome exhibits reduced virus-like immunogenicity, prolonged blood circulation time and enhanced gene delivery efficiency to weakly acidic foci (like tumor and arthritic tissue). Furthermore, reBiosome demonstrates robust therapeutic efficacy in breast cancer and arthritis by delivering gene editing and silencing systems, respectively. In conclusion, this study develops a universal, safe and efficient platform for gene therapies for cancer and inflammatory diseases.

6.
Mol Ther Nucleic Acids ; 29: 836-851, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159594

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer accounts for the majority of breast cancers diagnosed, and nearly 20% of patients do not respond to endocrine therapy. The pathogenesis of ER+ breast cancer has not been well elucidated. The enhancer is a cis-regulatory element that promotes gene transcription and plays an important role in the spatiotemporal expression of cellular genes. Nevertheless, the oncogenic enhancer and its role in the occurrence and progression of cancer remain unclear. Here, we report a novel oncogenic enhancer (named αE myc ) for c-Myc and reveal its activation mechanism in ER+ breast cancer. The results demonstrated that αE myc enhanced the transcription of downstream genes more than 20-fold. The deletion of the 7-bp region (GGTTGCA) in αE myc significantly downregulated the expression of c-Myc, resulting in cell nuclear changes, cell-cycle arrest, cell apoptosis, and finally, remarkable inhibition of cell proliferation. In conclusion, the present study discovers a novel oncogenic enhancer αE myc (801 base pairs [bp], at Chr8: 127668529-127669329) and offers a remarkable core enhancer target (GGTTGCA) of αE myc for gene therapy of ER+ breast cancer.

7.
Bioact Mater ; 11: 1-14, 2022 May.
Article in English | MEDLINE | ID: mdl-34938908

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer. However, how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved. Here, we report a kind of targeted core-shell nanoparticles (NPs) carrying dual plasmids (pHR-pCas9) for precise CCCTC-binding factor (CTCF) gene insert to circumvent metastatic breast cancer. The targeted core-shell NPs carrying pHR-pCas9 can accomplish γGTP-mediated cellular uptake and endosomal escape, facilitate the precise insert and stable expression of CTCF gene, inhibit the migration, metastasis, and colonization of metastatic breast cancer cells. Besides, the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein, followed by down-regulating stomatin (STOM) protein. The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.

8.
Small ; 17(13): e2007391, 2021 04.
Article in English | MEDLINE | ID: mdl-33522108

ABSTRACT

Breast cancer is the most common malignant disease in women all over the world and its chemotherapy outcome is restricted by multidrug resistance. Here, a nanostructure by functional larotaxel liposomes decorated with guanine-rich quadruplex nucleotide-lipid derivative for treatment of resistant breast cancer is developed. The studies are performed on the resistant breast cancer cells and the cancer-bearing mice. The nucleotide-lipid derivative (DSPE-PEG2000 -C6 -GT28nt) is synthesized by introducing a hydrophobic hexyl linkage between GT-28nt (containing 17 guanines and 11 thymidines) and DSPE-PEG2000 -NHS, and is incorporated on the functional larotaxel liposomes for specific binding with nucleolin receptor on the resistant cancer cells. The studies demonstrate that the liposomes had long circulatory effect, targeted capability, and significant anticancer efficacy in resistant cancer-bearing mice. The studies further reveal their action mechanism, consisting of blocking depolymerization of microtubules, arresting cell cycle, blocking JAK-STAT signaling pathway, and inhibiting activity of antiapoptotic proteins. In conclusion, the functional larotaxel liposomes can be used for effective treatment of drug-resistant breast cancer, and this study also offers a novel targeted nanomedicine based on nucleotide-lipid derivative.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanostructures , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Guanine , Guanine Nucleotides/therapeutic use , Humans , Liposomes , Mice , Taxoids
10.
Mol Ther Oncolytics ; 18: 396-408, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32913889

ABSTRACT

Relapse of cancer is associated with multidirectional differentiation and unrestricted proliferative replication potential of cancer stem cells. Herein, we propose the plastic differentiation strategy for irreversible differentiation of cancer stem cells; further, salinomycin and its newly constructed functional liposomes are used to implement this strategy. Whole gene, cancer stem cell-related RNA, and protein expression analyses reveal that salinomycin induces the cancer stem cells into normal cells, dormant cells, and mature cancer cells. Besides, the results indicate that the gatekeeper is related to the inhibition of the protein kinase C (PKC) α signaling pathway. The differentiated normal or dormant cells are incorporated into normal tissue, whereas the rest are killed by chemotherapy. The findings would offer the evidence for plastic differentiation of cancer stem cells and propose a novel strategy for cancer therapy.

11.
Asian J Pharm Sci ; 15(4): 461-471, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32952669

ABSTRACT

Natural exosomes can express specific proteins and carbohydrate molecules on the surface and hence have demonstrated the great potentials for gene therapy of cancer. However, the use of natural exosomes is restricted by their low transfection efficiency. Here, we report a novel targeting tLyp-1 exosome by gene recombinant engineering for delivery of siRNA to cancer and cancer stem cells. To reach such a purpose, the engineered tLyp-1-lamp2b plasmids were constructed and amplified in Escherichia coli. The tLyp-1-lamp2b plasmids were further used to transfect HEK293T tool cells and the targeting tLyp-1 exosomes were isolated from secretion of the transfected HEK293T cells. Afterwards, the artificially synthesized siRNA was encapsulated into targeting tLyp-1 exosomes by electroporation technology. Finally, the targeting siRNA tLyp-1 exosomes were used to transfect cancer or cancer stem cells. Results showed that the engineered targeting tLyp-1 exosomes had a nanosized structure (approximately 100 nm) and high transfection efficiency into lung cancer and cancer stem cells. The function verifications demonstrated that the targeting siRNA tLyp-1 exosomes were able to knock-down the target gene of cancer cells and to reduce the stemness of cancer stem cells. In conclusion, the targeting tLyp-1 exosomes are successfully engineered, and can be used for gene therapy with a high transfection efficiency. Therefore, the engineered targeting tLyp-1 exosomes offer a promising gene delivery platform for future cancer therapy.

12.
Nanomaterials (Basel) ; 10(5)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429472

ABSTRACT

Regular chemotherapy cannot eliminate leukemic cells, due to the sparse distribution of cancer cells in leukemia patients. Here, we report a precise nanostructure of folate-overhung mitoxantrone DNA tetrahedron that enables the treatment of leukemic cells by targeted action. Folate is used as a targeting molecule and synthesized with DNA strand in forming the folate-overhang DNA complement, and the complement is then separately base-paired onto six sides of the fabricated DNA tetrahedron. Mitoxantrone is used as an anticancer agent and intercalated into the double strands of the folate-overhung DNA tetrahedron for drug loading. The evaluation studies are performed on leukemia BALL-1 and K562 cells. The results demonstrate that the folate-overhung mitoxantrone DNA tetrahedra (approximately 25 nm) are able to target leukemic cells, transport across the nuclei membrane, induce the apoptosis, and enhance the overall efficacy of treating leukemic cells in vitro and in leukemia-bearing mice. This study provides a potential drug-containing DNA nanostructure, to clean the sparsely distributed leukemic cells in patients.

13.
Article in English | MEDLINE | ID: mdl-32258013

ABSTRACT

Reactive oxygen species (ROS) are essential in regulating various physiological functions. However, overproduction of ROS is implicated in the pathogenesis of various inflammatory diseases. Antioxidant therapy has thus represented an effective strategy for the treatment of oxidative stress relevant inflammatory diseases. Conventional anti-oxidative agents showed limited in vivo effects owing to their non-specific distribution and low retention in disease sites. Over the past decades, significant achievements have been made in the development of antioxidant nanotherapies that exhibit multiple advantages such as excellent pharmacokinetics, stable anti-oxidative activity, and intrinsic ROS-scavenging properties. This review provides a comprehensive overview on recent advances in antioxidant nanotherapies, including ROS-scavenging inorganic nanoparticles, organic nanoparticles with intrinsic antioxidant activity, and drug-loaded anti-oxidant nanoparticles. We highlight the biomedical applications of antioxidant nanotherapies in the treatment of different inflammatory diseases, with an emphasis on inflammatory bowel disease, cardiovascular disease, and brain diseases. Current challenges and future perspectives to promote clinical translation of antioxidant nanotherapies are also briefly discussed.

14.
J Control Release ; 314: 48-61, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31644935

ABSTRACT

Pulmonary delivery of active drugs has been applied for the treatment of obstructive lung diseases, including asthma, chronic obstructive pulmonary disease and cystic fibrosis, for several decades and has achieved progress in symptom management by bronchodilator inhalation. However, substantial progress in anti-inflammation, prevention of airway remodeling and disease progression is limited, since the majority of the formulation strategies focus only on particle deposition, which is insufficient for pulmonary delivery of the drugs. The lack of knowledge on lung absorption barriers in obstructive lung diseases and on pathogenesis impedes the development of functional formulations by rational design. In this review, we describe the physiological structure and biological functions of the barriers in various regions of the lung, review the pathogenesis and functional changes of barriers in obstructive lung diseases, and examine the interaction of these barriers with particles to influence drug delivery efficiency. Subsequently, we review rational particle design for overcoming lung barriers based on excipients selection, particle size and surface properties, release properties and targeting ability. Additionally, useful particle fabrication strategies and commonly used drug carriers for pulmonary delivery in obstructive lung diseases are proposed in this article.


Subject(s)
Bronchodilator Agents/administration & dosage , Drug Delivery Systems , Lung Diseases, Obstructive/drug therapy , Administration, Inhalation , Animals , Drug Design , Excipients/chemistry , Humans , Lung/metabolism , Lung/physiopathology , Lung Diseases, Obstructive/physiopathology , Particle Size , Surface Properties
15.
Int J Nanomedicine ; 14: 3645-3667, 2019.
Article in English | MEDLINE | ID: mdl-31190817

ABSTRACT

Background: Neo-adjuvant chemotherapy is an effective strategy for improving treatment of breast cancers. However, the efficacy of this treatment strategy is limited for treatment of triple negative breast cancer (TNBC). Gene therapy may be a more effective strategy for improving the prognosis of TNBC. Methods: A novel 25 nucleotide sense strand of miRNA was designed to treat TNBC by silencing the Slug gene, and encapsulated into DSPE-PEG2000-tLyp-1 peptide-modified functional liposomes. The efficacy of miRNA liposomes was evaluated on invasive TNBC cells and TNBC cancer-bearing nude mice. Furthermore, functional vinorelbine liposomes were constructed to investigate the anticancer effects of combined treatment. Results: The functional miRNA liposomes had a round shape and were nanosized (120 nm). Functional miRNA liposomes were effectively captured by TNBC cells in vitro and were target to mitochondria. Treatment with functional liposomes silenced the expression of Slug and Slug protein, inhibited the TGF-ß1/Smad pathway, and inhibited invasiveness and growth of TNBC cells. In TNBC cancer-bearing mice, functional miRNA liposomes exerted a stronger anticancer effect than functional vinorelbine liposomes, and combination therapy with these two formulations resulted in nearly complete inhibition of tumor growth. Preliminary safety evaluations indicated that the functional miRNA liposomes did not affect body weight or cause damage to any major organs. Furthermore, the functional liposomes significantly increased the half-life of the drug in the blood of cancer-bearing nude mice, and increased drug accumulation in breast cancer tissues. Conclusion: In this study, we constructed novel functional miRNA liposomes. These liposomes silenced Slug expression and inhibited the TGF-ß1/Smad pathway in TNBC cells, and enhanced anticancer efficacy in mice using combined chemotherapy. Hence, the present study demonstrated a promising strategy for gene therapy of invasive breast cancer.


Subject(s)
Gene Silencing , MicroRNAs/metabolism , Nanoparticles/chemistry , Particle Size , Snail Family Transcription Factors/genetics , Triple Negative Breast Neoplasms/therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Endocytosis/drug effects , Female , Humans , Liposomes , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Triple Negative Breast Neoplasms/pathology
16.
Int J Mol Sci ; 20(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060324

ABSTRACT

Antigen peptides and adjuvants have been extensively investigated for cancer immunotherapy, and they are expected to elicit specific immune responses for cancer treatment. However, the anti-cancer efficacy of antigen peptide and adjuvant-based cancer vaccines has been limited due to the inefficient delivery to draining lymph nodes after administration. Therefore, it is necessary to develop a suitable delivery system to transport antigen peptides and adjuvants. Here, we report a novel type of nanostructured lipovaccines for the treatment of melanoma by delivering antigen peptide (SL9) and oligodeoxynucleotide adjuvant (CpG) to the lymphatic vessels and to the draining lymph node. The SL9-CpG lipovaccines were characterized using dynamic laser scattering (DLS) and transmission electron microscopy (TEM). The lymph uptake, immune response elicitation and treatment effects were evaluated on melanoma-bearing C57BL/6 mice using flow cytometry (FCM), enzyme-linked immunosorbent assay (ELISA) and tumor inhibitory efficacy. The SL9-CpG lipovaccines were uniform with a nanoscale size (~70 nm), had high encapsulation efficiency, and exhibited effective lymph uptake, resulting in activation of specific cytotoxic CD8+ T cells, and release of IFN-γ, and a robust inhibition of tumor growth. Therefore, the nanostructured SL9-CpG lipovaccines offer a promising strategy for melanoma treatment.


Subject(s)
Cancer Vaccines/immunology , Glycine/analogs & derivatives , Immunomodulation , Melanoma/immunology , Melanoma/therapy , Peptides/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Glycine/chemistry , Glycine/immunology , Humans , Immunotherapy , Lymph Nodes/immunology , Melanoma/metabolism , Mice , Peptides/chemistry , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Xenograft Model Antitumor Assays
17.
RSC Adv ; 9(23): 13186-13200, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-35520771

ABSTRACT

Triple negative breast cancer (TNBC) has been characterized as a very heterogeneous subtype, and is more invasive and non-expressing of the genes for the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu, with poor prognosis, and hence the efficacy of regular chemotherapy is very limited. Here, we report a kind of double strand RNA (dsRNA) mPEI nanoparticle for treatment of invasive TNBC. The studies were performed on TNBC cells in vitro and in TNBC cancer-bearing mice. The results showed that dsRNA mPEI nanoparticles were able to effectively transfect cells, and demonstrated a strong capability in knocking-down the Fra-1 gene and down-stream MMP-1 and MMP-9 genes in TNBC cells and TNBC cancer-bearing mice, thereby inhibiting the invasion and migration of cells. After intratumoral injection, dsRNA mPEI nanoparticles exhibited a robust anticancer efficacy in TNBC cancer-bearing mice, and the anticancer efficacy was superior to that of paclitaxel. In conclusion, dsRNA mPEI nanoparticles are able to effectively treat aggressive TNBC, and the mechanism studies reveal that they take effect by knocking-down Fra-1 relevant genes, hence interfering in transcription and translation of the genes, which are necessary for growth and metastasis of TNBC. Therefore, the present study offers a new and promising formulation and strategy for effective treatment of TNBC.

18.
Int J Nanomedicine ; 13: 8119-8135, 2018.
Article in English | MEDLINE | ID: mdl-30555230

ABSTRACT

BACKGROUND: The existing chemo/radiotherapy fail to eliminate cancer cells due to the restriction of either drug resistance or radio tolerance. The predicament urges researchers to continuously explore alternative strategy for achieving a potent curative effect. METHODS: Functional chlorin gold nanorods (Ce6-AuNR@SiO2-d-CPP) were fabricated aiming at treating breast cancer by photothermal/photodynamic therapy (PTT/PDT). The nanostructure was developed by synthesizing Au nanorods as the photothermal conversion material, and by coating the pegylated mesoporous SiO2 as the shell for entrapping photosensitizer Ce6 and for linking the D-type cell penetrating peptide (d-CPP). The function of Ce6-AuNR@SiO2-d-CPP was verified on human breast cancer MCF-7 cells and MCF-7 cells xenografts in nude mice. RESULTS: Under combinational treatment of PTT and PDT, Ce6-AuNR@SiO2-d-CPP demonstrated a strong cytotoxicity and apoptosis inducing effects in breast cancer cells in vitro, and a robust treatment efficacy in breast cancer-bearing nude mice. The uptake mechanism involved the energy-consuming caveolin-mediated endocytosis, and Ce6-AuNR@SiO2-d-CPP in PTT/PDT mode could induce apoptosis by multiple pathways in breast cancer cells. CONCLUSION: Ce6-AuNR@SiO2-d-CPP demonstrated a robust efficacy in the treatment of breast cancer by photothermal/photodynamic therapy. Therefore, the present study could offer a new promising strategy to treat the refractory breast cancer.


Subject(s)
Breast Neoplasms/therapy , Gold/chemistry , Hyperthermia, Induced , Nanotubes/chemistry , Photochemotherapy , Photosensitizing Agents/administration & dosage , Porphyrins/administration & dosage , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Combined Modality Therapy , Female , Humans , Mice , Mice, Nude , Photosensitizing Agents/chemistry , Phototherapy , Porphyrins/chemistry , Silicon Dioxide/chemistry , Xenograft Model Antitumor Assays
19.
Nanomaterials (Basel) ; 8(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304783

ABSTRACT

The heterogeneity of breast cancer and the development of drug resistance are the relapse reasons of disease after chemotherapy. To address this issue, a combined therapeutic strategy was developed by building the nanostructured dihydroartemisinin plus epirubicin liposomes. Investigations were performed on human breast cancer cells in vitro and xenografts in nude mice. The results indicated that dihydroartemisinin could significantly enhance the efficacy of epirubicin in killing different breast cancer cells in vitro and in vivo. We found that the combined use of dihydroartemisinin with epirubicin could efficiently inhibit the activity of Bcl-2, facilitate release of Beclin 1, and further activate Bax. Besides, Bax activated apoptosis which led to the type I programmed death of breast cancer cells while Beclin 1 initiated the excessive autophagy that resulted in the type II programmed death of breast cancer cells. In addition, the nanostructured dihydroartemisinin plus epirubicin liposomes prolonged circulation of drugs, and were beneficial for simultaneously delivering drugs into breast cancer tissues. Hence, the nanostructured dihydroartemisinin plus epirubicin liposomes could provide a new therapeutic strategy for treatment of breast cancer.

20.
Artif Cells Nanomed Biotechnol ; 46(sup1): 1180-1190, 2018.
Article in English | MEDLINE | ID: mdl-29519164

ABSTRACT

The efficacy of anticancer drugs is rather limited in the treatment of brain glioma due to the hindrance of the blood-brain barrier (BBB). Herein, we reported an easy formulation of functional docetaxel nanomicelles for the treatment of brain glioma using a graft copolymer soluplus as basic material through dual-modifications with a glucose-lipid derivative and a dequalinium-lipid derivative. The studies were performed on brain glioma U87MG cells, in vitro BBB models and brain glioma-bearing nude mice. The functional docetaxel nanomicelles were approximately 100 nm. The results demonstrated that the functional docetaxel nanomicelles could transport across the BBB, enhance the cellular uptake, target to the mitochondria, induce the apoptosis, increase the cytotoxicity in the brain glioma cells, and extend survival span of the brain glioma-bearing mice. The action mechanisms were associated with dual-modifications by the glucose-lipid derivative and the dequalinium-lipid derivative, both of which are beneficial for the transport across the BBB. Furthermore, the modification with dequalinium-lipid derivative was able to target to the brain glioma cells and to the mitochondria. In conclusion, the functional docetaxel nanomicelles would be a promising formulation for the treatment of brain glioma, deserving further development for clinical trials.


Subject(s)
Brain Neoplasms/drug therapy , Docetaxel/chemistry , Docetaxel/pharmacology , Drug Compounding/methods , Glioma/drug therapy , Micelles , Nanostructures/chemistry , Animals , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Docetaxel/metabolism , Docetaxel/therapeutic use , Glioma/pathology , Humans , Male , Mice , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...