Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
World J Clin Cases ; 12(18): 3482-3490, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983436

ABSTRACT

BACKGROUND: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a serious complication of chronic obstructive pulmonary disease, often characterized by increased morbidity and mortality. In traditional Chinese medicine, AECOPD is linked to phlegm-heat and blood-stasis, presenting symptoms like thick sputum, fever, and chest pain. It has been shown that acetylcysteine inhalation in conjunction with conventional therapy significantly reduced inflammatory markers and improved lung function parameters in patients with AECOPD, suggesting that acetylcysteine may be an important adjunctive therapy for patients with phlegm-heat-blood stasis type AECOPD. AIM: To investigate the effect of acetylcysteine on microinflammation and lung ventilation in patients with phlegm-heat and blood-stasis-type AECOPD. METHODS: One hundred patients with phlegm-heat and blood-stasis-type AECOPD were randomly assigned to two groups. The treatment group received acetylcysteine inhalation (10% solution, 5 mL, twice daily) along with conventional therapy, whereas the control group received only conventional therapy. The treatment duration was 14 d. Inflammatory markers (C-reactive protein, interleukin-6, and tumor necrosis factor-alpha) in the serum and sputum as well as lung function parameters (forced expiratory volume in one second, forced vital capacity, and peak expiratory flow) were assessed pre- and post-treatment. Acetylcysteine inhalation led to significant reductions in inflammatory markers and improvements in lung function parameters compared to those in the control group (P < 0.05). This suggests that acetylcysteine could serve as an effective adjunct therapy for patients with phlegm-heat and blood-stasis-type AECOPD. RESULTS: Acetylcysteine inhalation significantly reduced inflammatory markers in the serum and sputum and improved lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD compared with the control group. These differences were statistically significant (P < 0.05). The study concluded that acetylcysteine inhalation had a positive effect on microinflammation and lung ventilation function in patients with this type of AECOPD, suggesting its potential as an adjuvant therapy for such cases. CONCLUSION: Acetylcysteine inhalation demonstrated significant improvements in reducing inflammatory markers in the serum and sputum, as well as enhancing lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD. These findings suggest that acetylcysteine could serve as a valuable adjuvant therapy for individuals with this specific type of AECOPD, offering benefits for managing microinflammation and optimizing lung function.

2.
BMC Psychiatry ; 24(1): 345, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714952

ABSTRACT

BACKGROUND: Recent evidences have shown sex-differential cognitive deficits in bipolar disorder (BD) and differences in cognitions across BD subtypes. However, the sex-specific effect on cognitive impairment in BD subtype II (BD-II) remains obscure. The aim of the current study was to examine whether cognitive deficits differ by gender in youth with BD-II depression. METHOD: This cross-sectional study recruited 125 unmedicated youths with BD-II depression and 140 age-, sex-, and education-matched healthy controls (HCs). The Chinese version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) was used to assess cognitive functions. Mood state was assessed using the 24-item Hamilton Depression Rating Scale (24-HDRS) and the Young Mania Rating Scale (YMRS). Multivariate analysis of covariance (MANCOVA) was conducted. RESULT: ​Compared with HCs, patients with BD-II depression had lower scores on MCCB composite and its seven cognitive domains (all p < 0.001). After controlling for age and education, MANCOVA revealed significant gender-by-group interaction on attention/vigilance (F = 6.224, df = 1, p = 0.013), verbal learning (F = 9.847, df = 1, p = 0.002), visual learning (F = 4.242, df = 1, p = 0.040), and composite (F = 8.819, df = 1, p = 0.003). Post hoc analyses suggested that males performed worse in the above-mentioned MCCB tests than females in BD-II depression. CONCLUSION: Our study demonstrated generalized cognitive deficits in unmedicated youths with BD-II depression. Male patients performed more serious cognitive impairment on attention/vigilance, verbal learning, and visual learning compared to female patients.


Subject(s)
Bipolar Disorder , Cognitive Dysfunction , Humans , Male , Female , Bipolar Disorder/psychology , Bipolar Disorder/complications , Cross-Sectional Studies , Adolescent , Cognitive Dysfunction/psychology , Sex Factors , Neuropsychological Tests , Young Adult , Psychiatric Status Rating Scales , Cognition/physiology
3.
Int J Gen Med ; 17: 1171-1184, 2024.
Article in English | MEDLINE | ID: mdl-38562209

ABSTRACT

Background: Cooking oil and dietary foods are easily contaminated by aflatoxins (AFs) in Guangxi, China where low birth weight and preterm birth were prevalent. However, there are no data on AF exposure in pregnant women or their impact on newborn birth outcomes. This study aims to measure the levels and correlations of AFs in cooking oil, estimated dietary intake (EDI) of AFs in dietary foods, and serum AFB1 albumin adducts (AFB1-alb) with newborn birthweight and gestational age at birth. Methods: A prospective study was conducted among 126 pregnant women in Guangxi, China. All recruited women were interviewed for demographic data and behavior and obstetric information and then followed up until giving birth. AF measurements were obtained from cooking oil, dietary foods, maternal serum, and cord blood and the correlations of AF levels with newborn birthweight and gestational age at birth were tested using correlation analysis. Results: The median EDI of AFs in cooking oil was 2.61 ng/kg.bw/day and in dietary foods 2.95 ng/kg.bw/day. High positive correlations among EDI of aflatoxin B1 (AFB1) from cooking oil and dietary foods were found (r > 0.7). Low positive correlations of AFB1-alb in maternal serum and cord blood and both EDI of AFB1 in both cooking oil and dietary foods were shown (r ≈0.3). Significant correlations between AF levels in both cooking oil and dietary foods with birth weight were found, but very low negative correlations (r = - 0.244 ~ -0.285). AFB1 levels in foods, maternal serum and cord blood levels were high in pregnant women with newborn low birth weight and preterm birth. Conclusion: The EDIs of AFB1 from both cooking oil and dietary foods were significantly correlated with AFB1-alb in maternal serum and cord blood. Negative correlations of AFs from cooking oils and foods with newborn birth weight should be paid more attention.

4.
Int Wound J ; 21(5): e14890, 2024 May.
Article in English | MEDLINE | ID: mdl-38682890

ABSTRACT

This study sought to evaluate the perceptions of pressure injury (PI) management staff regarding skin failure (SF). Additionally, an analysis of influencing factors based on the collected data was conducted to establish a foundation for targeted SF training. A descriptive, cross-sectional survey was undertaken in October-November 2023, utilising a convenience sampling method involving selected management staff of PI from 16 provinces in China. A total of 501 nursing participants were included, exhibiting an overall perception level that was moderately low. Although the majority were aware of the possibility of SF (n = 417, 83.23%), only 60% reported an understanding of the fundamentals of SF, with the lowest level of comprehension observed in differentiating between SF and PI (n = 212, 42.31%). Overall attitudes were generally positive. Regarding behaviour, active learning was more prevalent (n = 340, 67.86%), but training is less (n = 287, 57.29%). Family education (n = 401, 80.04%) and nursing record monitoring (n = 426, 85.03%) demonstrated better behaviour. Further analysis revealed that training (t = 13.937, p < 0.001) and professional title (F = 4.681, p = 0.010) had a significant effect on participants' perceptions. These findings underscore that there remains a substantial lack of perception about SF amongst participants. Overall, participants exhibited a positive attitude towards SF, highlighting the need for future improvements in SF training.


Subject(s)
Pressure Ulcer , Humans , Cross-Sectional Studies , China , Male , Female , Adult , Middle Aged , Surveys and Questionnaires , Attitude of Health Personnel , Health Knowledge, Attitudes, Practice , Young Adult
5.
Curr Med Sci ; 44(2): 328-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517677

ABSTRACT

OBJECTIVE: This study aimed to investigate the incidence of enteral nutrition intolerance (ENI) in patients with sepsis and explore potential risk factors. METHODS: A case-control study was conducted in patients with sepsis who were receiving enteral nutrition (EN) at a tertiary hospital in China. The included patients were divided into the ENI group and the non-ENI group. Univariate and multivariate analyses were performed to identify the risk factors for ENI. RESULTS: A total of 859 patients were included in the study. Among them, 288 (33.53%) patients experienced symptoms of ENI, including diarrhea, vomiting, bloating, and gastric retention. Logistic regression analysis revealed that the Acute Physiology and Chronic Health Evaluation H (APACHE H) score, thoracocentesis, and usage of cardiotonic drugs (namely, inotropes) were independent predictors of the ENI. CONCLUSION: The incidence of ENI is relatively high in patients with sepsis, especially in those who have higher APACHE H scores, have undergone thoracocentesis, and have received inotropes.


Subject(s)
Enteral Nutrition , Sepsis , Humans , Case-Control Studies , Nutritional Status , Sepsis/complications , Sepsis/epidemiology , Risk Factors
6.
Medicine (Baltimore) ; 103(13): e37505, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552089

ABSTRACT

Preeclampsia and eclampsia are serious complications of pregnancy, leading to high rates of maternal and neonatal mortality. During pregnancy, there are changes in relevant serum metabolites in women. However, it remains unclear if these serum metabolites contribute to the development of associated disorders during pregnancy. Therefore, we conducted a Mendelian randomization study to explore the causal relationship between serum metabolites and preeclampsia and eclampsia. We utilized the inverse variance weighted model as our primary analysis approach. We complemented this with sensitivity analyses, including the heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis, to ensure the robustness of our findings. Furthermore, we conducted linkage disequilibrium score regression, multivariable Mendelian randomization, and metabolic pathway analysis to further explore the genetic data. The Mendelian randomization analysis has identified γ-glutamylglutamine, inosine, and isoleucine 10 metabolites that are significantly associated with preeclampsia, and γ-glutamylglutamine and phenylacetate 8 metabolites that may potentially contribute to the development of eclampsia. Notably, γ-glutamylglutamine has been found to have a causal relationship with both preeclampsia and eclampsia. In the multivariable Mendelian randomization analysis, our research findings suggest that both isoleucine and X-14304-leucylalanine directly impact preeclampsia within the context of amino acids and peptides. Moreover, our observations reveal that carbohydrates can also have a direct effect on preeclampsia. Importantly, it should be emphasized that only 3-lactate in amino acids has been shown to have a direct influence on eclampsia. This research has the potential to enhance our understanding of the biological variances related to disease status, providing a foundation for future investigations.


Subject(s)
Antifibrinolytic Agents , Eclampsia , Pre-Eclampsia , Pregnancy , Infant, Newborn , Humans , Female , Pre-Eclampsia/genetics , Isoleucine , Mendelian Randomization Analysis , Amino Acids , Genome-Wide Association Study
7.
J Affect Disord ; 351: 799-807, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38311073

ABSTRACT

OBJECTIVE: Vortioxetine has been shown to improve cognitive performance in people with depression. This study will look at the changes in neurobiochemical metabolites that occur when vortioxetine improves cognitive performance in MDD patients, with the goal of determining the neuroimaging mechanism through which vortioxetine improves cognitive function. METHODS: 30 depressed patients and 30 demographically matched healthy controls (HC) underwent MCCB cognitive assessment and 1H-MRS. After 8 weeks of vortioxetine medication, MCCB and 1H-MRS tests were retested in the MDD group. Before and after therapy, changes in cognitive performance, NAA/Cr, and Cho/Cr were examined in the MDD group. RESULTS: Compared with the HC group, the MDD group had significant reduced in verbal learning, social cognition, and total cognition (all p < 0.05). And the MDD group had lower NAA/Cr in Right thalamus and Left PFC; the Cho/Cr in Right thalamus was lower than HC; the Cho/Cr in Left ACC had significantly increase (all p < 0.05). The MDD group showed significant improvements in the areas of verbal learning, attention/alertness, and total cognitive function before and after Vortioxetine treatment (all p < 0.05). The NAA/Cr ratio of the right PFC before and after treatment (t = 2.338, p = 0.026) showed significant changes. CONCLUSIONS: Vortioxetine can enhance not just the depression symptoms of MDD patients in the initial period, but also their verbal learning, social cognition, and general cognitive capacities after 8 weeks of treatment. Furthermore, vortioxetine has been shown to enhance cognitive function in MDD patients by altering NAA/Cr and Cho/Cr levels in the frontal-thalamic-ACC.


Subject(s)
Depressive Disorder, Major , Humans , Vortioxetine/therapeutic use , Depressive Disorder, Major/psychology , Follow-Up Studies , Cognition , Motivation
8.
Gene ; 909: 148305, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38403172

ABSTRACT

OBJECTIVE: The objective of this study was to assess the impact of the total saponins of Panax japonicus (TSPJ) on Type 2 diabetes mellitus (T2DM). RESULTS: The intervention of TSPJ was found to have the ability to reverse physiological indicators associated with T2DM, while also enhancing the expression of genes involved in glucose metabolism and intestinal homeostasis. Additionally, alterations in the composition of the gut microbiota were observed. Based on the findings of experimental results and network pharmacology analysis, it is evident that vascular endothelial growth factor A (VEGFA) serves as a prominent shared target between TSPJ and diabetes. The outcomes observed in T2DM mice overexpressing VEGFA align with those observed in T2DM mice treated with TSPJ. CONCLUSIONS: TSPJ administration and VEGFA overexpression yield similar effects on T2DM in mice. Thus, in terms of mechanism, by upregulating the expression of VEGFA, TSPJ may ameliorate metabolic imbalance, preserve intestinal homeostasis, and lessen the symptoms of type 2 diabetes. The findings demonstrated the viability of using VEGFA as a type 2 diabetes therapy option and offered important insights into the therapeutic mechanisms by TSPJ in the management of T2DM. To determine the exact mechanisms behind the effects of TSPJ and VEGFA and to assess their potential therapeutic uses, more research efforts are necessary.


Subject(s)
Diabetes Mellitus, Type 2 , Panax , Saponins , Animals , Mice , Saponins/pharmacology , Saponins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Vascular Endothelial Growth Factor A/genetics
9.
Toxins (Basel) ; 15(11)2023 11 09.
Article in English | MEDLINE | ID: mdl-37999509

ABSTRACT

Aflatoxins are liver carcinogens and are common contaminants in unpackaged peanut (UPP) oil. However, the health risks associated with consuming aflatoxins in UPP oil remain unclear. In this study, aflatoxin contamination in 143 UPP oil samples from Guangdong Province were assessed via liquid chromatography-tandem mass spectrometry (LC-MS). We also recruited 168 human subjects, who consumed this oil, to measure their liver functions and lipid metabolism status. Aflatoxin B1 (AFB1) was detected in 79.72% of the UPP oil samples, with levels ranging from 0.02 to 174.13 µg/kg. The average daily human intake of AFB1 from UPP oil was 3.14 ng/kg·bw/day; therefore, the incidence of liver cancer, caused by intake of 1 ng/kg·bw/day AFB1, was estimated to be 5.32 cases out of every 100,000 persons per year. Meanwhile, Hepatitis B virus (HBV) infection and AFB1 exposure exerted a synergistic effect to cause liver dysfunction. In addition, the triglycerides (TG) abnormal rate was statistically significant when using AFB1 to estimate daily intake (EDI) quartile spacing grouping (p = 0.011). In conclusion, high aflatoxin exposure may exacerbate the harmful effects of HBV infection on liver function. Contamination of UPP oil with aflatoxins in Guangdong urgently requires more attention, and public health management of the consumer population is urgently required.


Subject(s)
Aflatoxins , Humans , Aflatoxins/toxicity , Aflatoxins/analysis , Peanut Oil/analysis , Food Contamination/analysis , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , China/epidemiology
10.
J Agric Food Chem ; 71(44): 16763-16776, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37877414

ABSTRACT

A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and ß-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.


Subject(s)
Hypoglycemic Agents , Porphyra , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Porphyra/chemistry , alpha-Glucosidases , Molecular Docking Simulation , alpha-Amylases , Glycoproteins/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
11.
Food Funct ; 14(17): 7977-7991, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37578326

ABSTRACT

The hypoglycemic activity of natural algal glycoproteins has attracted interest, but studies of their mechanism of regulating glucose metabolism are lacking. This study investigated the hypoglycemic activity of Porphyra haitanensis glycoprotein (PG) in a mouse hyperglycemia model. The underlying mechanism was elucidated by monitoring changes in the gut microbiome and untargeted serum metabolomics. The results indicated that 30-300 mg kg-1 PG regulated blood glucose levels by increasing insulin secretion, reducing glycated hemoglobin, and improving streptozotocin-induced hyperglycemia in a concentration-dependent manner. In particular, 300 mg kg-1 PG decreased fasting blood glucose by 63.11% and glycosylated hemoglobin by 24.50% and increased insulin secretion by 163.97%. The mechanism of the improvement of hyperglycemia by PG may involve regulating beneficial intestinal bacteria (e.g., norank_f__Muribaculaceae and Lachnospiraceae) and altering the serum metabolic profile (e.g., upregulation of hypotaurine, 3-hydroxy-2-naphthoic acid, and L-glycine), to regulate taurine and hypotaurine, the TCA cycle, AMPK, and pyruvate metabolism. Our findings supported the development of Porphyra haitanensis and its glycoprotein as novel natural antidiabetic compounds to regulate the glycemic balance.


Subject(s)
Gastrointestinal Microbiome , Hyperglycemia , Porphyra , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Mice, Obese , Blood Glucose/metabolism , Metabolome , Glycoproteins/metabolism , Disease Models, Animal , Hyperglycemia/drug therapy
12.
J Cachexia Sarcopenia Muscle ; 14(5): 2126-2142, 2023 10.
Article in English | MEDLINE | ID: mdl-37469245

ABSTRACT

BACKGROUND: DJ-1 is a causative gene for Parkinson's disease. DJ-1-deficient mice develop gait-associated progressive behavioural abnormalities and hypoactive forearm grip strength. However, underlying activity mechanisms are not fully explored. METHODS: Western blotting and quantitative real-time polymerase chain reaction approaches were adopted to analyse DJ-1 expression in skeletal muscle from aged humans or mice and compared with young subjects. Skeletal muscle-specific-DJ-1 knockout (MDKO) mice were generated, followed by an assessment of the physical activity phenotypes (grip strength, maximal load capacity, and hanging, rotarod, and exercise capacity tests) of the MDKO and control mice on the chow diet. Muscular atrophy phenotypes (cross-sectional area and fibre types) were determined by imaging and quantitative real-time polymerase chain reaction. Mitochondrial function and skeletal muscle morphology were evaluated by oxygen consumption rate and electron microscopy, respectively. Tail suspension was applied to address disuse atrophy. RNA-seq analysis was performed to indicate molecular changes in muscles with DJ-1 ablation. Dual-luciferase reporter assays were employed to identify the promoter region of Trim63 and Fbxo32 genes, which were indirectly regulated by DJ-1 via the FoxO1 pathway. Cytoplasmic and nuclear fractions of DJ-1-deleted muscle cells were analysed by western blotting. Compound 23 was administered into the gastrocnemius muscle to mimic the of DJ-1 deletion effects. RESULTS: DJ-1 expression decreased in atrophied muscles of aged human (young men, n = 2; old with aged men, n = 2; young women, n = 2; old with aged women, n = 2) and immobilization mice (n = 6, P < 0.01). MDKO mice exhibited no body weight difference compared with control mice on the chow diet (Flox, n = 8; MDKO, n = 9). DJ-1-deficient muscles were slightly dystrophic (Flox, n = 7; MDKO, n = 8; P < 0.05), with impaired physical activities and oxidative capacity (n = 8, P < 0.01). In disuse-atrophic conditions, MDKO mice showed smaller cross-sectional area (n = 5, P < 0.01) and more central nuclei than control mice (Flox, n = 7; MDKO, n = 6; P < 0.05), without alteration in muscle fibre types (Flox, n = 6; MDKO, n = 7). Biochemical analysis indicated that reduced mitochondrial function and upregulated of atrogenes induced these changes. Furthermore, RNA-seq analysis revealed enhanced activity of the FoxO1 signalling pathway in DJ-1-ablated muscles, which was responsible for the induction of atrogenes. Finally, compound 23 (an inhibitor of DJ-1) could mimic the effects of DJ-1 ablation in vivo. CONCLUSIONS: Our results illuminate the crucial of skeletal muscle DJ-1 in the regulation of catabolic signals from mechanical stimulation, providing a therapeutic target for muscle wasting diseases.


Subject(s)
Muscle, Skeletal , Muscular Disorders, Atrophic , Male , Humans , Animals , Female , Mice , Aged , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Disorders, Atrophic/metabolism , Mitochondria/metabolism
13.
Quant Imaging Med Surg ; 13(6): 3927-3937, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284110

ABSTRACT

Background: To explore the risk of intracranial hemorrhage (ICH) after internal carotid artery stenting (CAS) in patients with symptomatic severe carotid stenosis by computed tomography perfusion (CTP). Methods: The clinical and imaging data of 87 patients with symptomatic severe carotid stenosis who underwent CTP before CAS were retrospectively analyzed. The absolute values of the cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) were calculated. The relative values (i.e., the rCBF, rCBV, rMTT, and rTTP), defined as the comparison between ipsilateral and contralateral hemispheres, were also derived. The degree of carotid artery stenosis was divided into 3 grades, and the Willis' circle was classified into 4 types. The relationship between the occurrence of the ICH and CTP parameters, the Willis' circle type, and the clinical baseline data were evaluated. A receiver operating characteristic (ROC) curve analysis was performed to determine the most effective CTP parameter for the prediction of ICH. Results: In total, 8 patients (9.2%) developed ICH after CAS. The results showed that the CBF (P=0.025), MTT (P=0.029), rCBF (P=0.006), rMTT (P=0.004), rTTP (P=0.006), and the degree of carotid artery stenosis (P=0.021) differed significantly between the ICH group and non-ICH group. The ROC curve analysis showed that the CTP parameter with the maximal area under the curve (AUC) for ICH was rMTT (AUC =0.808), which indicated that patients with an rMTT >1.88 were more likely to develop ICH (sensitivity: 62.5%, specificity: 96.2%). The occurrence of ICH after CAS was not related to the type of Willis' circle (P=0.713). Conclusions: CTP can be used to predict ICH after CAS in patients with symptomatic severe carotid stenosis, and patients with a preoperative rMTT >1.88 should be closely monitored for evidence of ICH after CAS.

14.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165485

ABSTRACT

Many bioactive compounds are reported from marine organisms, which are significantly different from those found in terrestrial organisms regarding their chemical structures and pharmacological activities. Marine glycoproteins (MGs) have aroused increasing attention as a good nutrient source owing to their potential applications in medicine, cosmetics and food. However, there is a lack of a comprehensive study on MGs to help readers understand the current state of research on marine-derived glycoproteins. The current review compiles the recent progress made on the structures and functions of MGs with future perspectives to maximize their value and applications via bibliometric analysis methods for the first time. The current research on MGs appears mostly limited to the laboratory, with no large-scale production of marine glycoproteins developed. The sugar chains are bound to proteins through covalent bonds that can readily be cleaved leading to difficultly in their separation and purification. Health effects attributed to MGs include treatment of inflammatory diseases, as well as anti-oxidant, immune modulation, anti-tumor, hypolipidemic, hypoglycemic, anti-bacterial and anti-freeze activities. This review can not only deepen the understanding of the functions of MGs, but also lay an important foundation for the further development and utilization of marine resources.


Overview on isolation, structural and functional properties of marine glycoproteins (MGs) via bibliometric analysis methods for the first time.Marine glycoproteins (MGs) have various biological activities and potential health applications.glycoproteins from marine organisms (MGs) significantly enhanced anti-oxidant and anti-inflammatory activities.

15.
J Affect Disord ; 335: 256-263, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37164065

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) and insomnia have been linked to deficiencies in cognitive performance. However, the underlying mechanism of cognitive impairment in MDD patients with insomnia symptoms (IS) remains unclear. This study aimed to explore the effects of IS in patients with MDD by comparing cognitive function indices among those with IS, those without insomnia symptoms (NIS), and healthy controls (HCs). In addition, we assessed whether the dysfunction of central nervous system (CNS) is one of the important pathophysiologic mechanisms of IS in patients with MDD by comparing the biochemical metabolism ratios in the anterior cingulate cortex (ACC). METHOD: Fifty-five MDD with IS, 39 MDD without IS, and 47 demographically matched HCs underwent the MATRICS Consensus Cognitive Battery (MCCB) assessment and proton magnetic resonance spectroscopy (1H-MRS). MCCB cognitive scores and biochemical metabolism in ACC were assessed and compared between groups. RESULTS: Compared to the HCs group, IS and NIS groups scored significantly lower in seven MCCB cognitive domains (speed of processing, attention/vigilance, working memory, verbal learning, visual learning, reasoning problem solving and social cognition). IS group showed a lower speed of processing and lower Cho/Cr ratio in the left ACC vs. NIS group and HCs. Also, in IS group, the Cho/Cr ratio in the left ACC was positively correlated with the composite T-score. CONCLUSION: Patients with comorbidity of MDD with IS may exhibit more common MCCB cognitive impairments than those without IS, particularly speed of processing. Also, dysfunction of ACC may underlie the neural substrate of cognitive impairment in MDD with IS.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Sleep Initiation and Maintenance Disorders , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/diagnostic imaging , Gyrus Cinguli , Cognition/physiology , Cognitive Dysfunction/etiology
16.
Foods ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37107484

ABSTRACT

Lipid metabolism disorder has become an important hidden danger threatening human health, and various supplements to treat lipid metabolism disorder have been studied. Our previous studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose (GB), and high-dose (GC) groups that were significantly different from that of group M, respectively. Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these metabolic pathways.

17.
J Endocrinol ; 258(1)2023 07 01.
Article in English | MEDLINE | ID: mdl-37074365

ABSTRACT

Obesity is caused by imbalanced energy intake and expenditure. Excessive energy intake and storage in adipose tissues are associated with many diseases. Several studies have demonstrated that vascular growth endothelial factor B (VEGFB) deficiency induces obese phenotypes. However, the roles of VEGFB isoforms VEGFB167 and VEGFB186 in adipose tissue development and function are still not clear. In this study, genetic mouse models of adipose-specific VEGFB167 and VEGFB186 overexpression (aP2-Vegfb167 tg/+and aP2-Vegfb186tg/+) were generated and their biologic roles were investigated. On regular chow, adipose-specific VEGFB186 is negatively associated with white adipose tissues (WATs) and positively regulates brown adipose tissues (BATs). VEGFB186 upregulates energy metabolism and metabolism-associated genes. In contrast, VEGFB167 has a nominal role in adipose development and function. On high-fat diet, VEGFB186 expression can reverse the phenotypes of VEGFB deletion. VEGFB186 overexpression upregulates BAT-associated genes and downregulates WAT-associated genes. VEGFB186 and VEGFB167 have very distinct roles in the regulation of adipose development and energy metabolism. As a key regulator of adipose tissue development and energy metabolism, VEGFB186 may be a target for obesity prevention and treatment.


Subject(s)
Adipose Tissue , Complement Factor B , Mice , Animals , Complement Factor B/metabolism , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Obesity/metabolism , Energy Metabolism/genetics , Diet, High-Fat/adverse effects
18.
Foods ; 12(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36981171

ABSTRACT

Fatigue is related to a variety of chronic diseases and has become a hot research topic in recent years. Various bioactive components have been extracted from hairtail fish (Trichiurus lepturus); however, none of these studies involved the anti-fatigue activity of hairtail fish glycoprotein (HGP). Thus, antioxidant experiments were conducted in vitro, and the anti-fatigue activity of HGP was further evaluated in BALB/c mice. The effects of HGP on the behavior of BALB/c mice were verified by classical behavioral experiments, and the indicators related to anti-fatigue activity were detected. The results showed that the antioxidant capacity in vitro of HGP increased gradually in the concentration range of 10 to 100 mg/mL. HGP improved the exercise ability of the mice. HGP was also found to significantly (p < 0.05) reduce the serum levels of lactate dehydrogenase (LDH), blood lactic acid (BLA), blood urea nitrogen (BUN), and creatine kinase (CK). The contents of liver glycogen (LG) and muscle glycogen (MG) were also significantly (p < 0.05) increased by HGP. Malondialdehyde (MDA) content in the serum and brains of the mice was significantly (p < 0.05) reduced and catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly (p < 0.05) increased by HGP, especially in the middle- and high-dose groups. These results enhance our understanding of the anti-fatigue function of HGP and lay an important foundation for the further development and utilization of hairtail fish resources.

19.
Food Chem X ; 18: 100645, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36968310

ABSTRACT

Hairtail (Trichiurus lepturus) is a kind of abundant marine fish, and its by-products contain rich protein resources, which can be better exploited and utilized in the food industry. In this study, the glycoprotein of hairtail by-products (GHB) was extracted using ultrasonic-assisted salt solution extraction with hairtail by-products as the raw material. The anti-fatigue effect of GHB was explored by mouse behavior experiments (shuttle box test, open field test and load swimming test). The results showed that the active escape times of the GHB group increased compared with the blank group in the shuttle box test, and the GHB group stayed in the central area for more time in the open field test. At the same time, the exhaustive swimming time of high-dose-group mice was 122.01% longer than that of the blank control group. GHB can improve the memory learning ability and activity of mice, and exert its anti-fatigue effect by eliminating excessive free radicals, slowing the metabolism of amino acids and proteins, and increasing glycogen reserves. This study provides a theoretical basis for the function mechanism of glycoprotein of hairtail by-products and the development of supplementary material in functional foods.

20.
Nutrients ; 15(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36839405

ABSTRACT

Calorie restriction (CR) and exercise training (EX) are two critical lifestyle interventions for the prevention and treatment of metabolic diseases, such as obesity and diabetes. Brown adipose tissue (BAT) and skeletal muscle are two important organs for the generation of heat. Here, we undertook detailed transcriptional profiling of these two thermogenic tissues from mice treated subjected to CR and/or EX. We found transcriptional reprogramming of BAT and skeletal muscle as a result of CR but little from EX. Consistent with this, CR induced alterations in the expression of genes encoding adipokines and myokines in BAT and skeletal muscle, respectively. Deconvolution analysis showed differences in the subpopulations of myogenic cells, mesothelial cells and endogenic cells in BAT and in the subpopulations of satellite cells, immune cells and endothelial cells in skeletal muscle as a result of CR or EX. NicheNet analysis, exploring potential inter-organ communication, indicated that BAT and skeletal muscle could mutually regulate their fatty acid metabolism and thermogenesis through ligands and receptors. These data comprise an extensive resource for the study of thermogenic tissue molecular responses to CR and/or EX in a healthy state.


Subject(s)
Adipose Tissue, Brown , Caloric Restriction , Mice , Animals , Adipose Tissue, Brown/metabolism , Endothelial Cells , Transcriptome , Thermogenesis/physiology , Muscle, Skeletal/metabolism , Energy Metabolism/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...