Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36975699

ABSTRACT

Flexible electronics have gained significant research attention in recent years due to their potential applications as smart and functional materials. Typically, electroluminescence devices produced by hydrogel-based materials are among the most notable flexible electronics. With their excellent flexibility and their remarkable electrical, adaptable mechanical and self-healing properties, functional hydrogels offer a wealth of insights and opportunities for the fabrication of electroluminescent devices that can be easily integrated into wearable electronics for various applications. Various strategies have been developed and adapted to obtain functional hydrogels, and at the same time, high-performance electroluminescent devices have been fabricated based on these functional hydrogels. This review provides a comprehensive overview of various functional hydrogels that have been used for the development of electroluminescent devices. It also highlights some challenges and future research prospects for hydrogel-based electroluminescent devices.

2.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36838030

ABSTRACT

Sustainable and environmentally friendly activated carbon from biomass materials is proposed to produce supercapacitors from banana peels and has the potential to replace the non-sustainable and hazardous process from either graphite or/and fossil fuels. In order to determine the potential of using banana peel for supercapacitor application, raw banana peel, a bio-waste, was activated both mechanically and chemically to observe the real differences. The sample was activated at 700 °C and chemically activated using KOH. Characterization of activated banana peel was performed using FTIR, DLS, TGA and XRD analytical equipment. FTIR analysis revised the presence of hydroxyl, carbonyl and aromatic compounds on a banana peel cellulose-based carbon. The TGA results proved that 700 °C could be sufficient to totally carbonize banana peel. DLS clearly showed a strong difference between the carbonized and KOH-activated material in particle size distribution. Meanwhile, surface area analysis using BET displayed an increase from 553.862 m2/g to 565.024 m2/g BET in surface area (SBET) when carbon was activated using KOH with a nitrogen isotherm at 77.350 K. Specific capacitance was increased from 0.3997 Fg-1 to 0.821 Fg-1, suggesting more than a 100% increase in the specific capacity due to KOH activation, as proved by the cyclic voltammetry (CV) curve. The X-ray diffraction results revealed the patterns of activated carbon. The findings demonstrated the feasibility of using banana peel waste as a low-cost and sustainable material for the preparation of flexible supercapacitor batteries.

3.
Gels ; 9(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36826276

ABSTRACT

Smart hydrogels with high electrical conductivity, which can be a real source of power while also collecting and storing the diverse sources of energy with ultrahigh stretchability, strong self-healability, low-temperature tolerance, and excellent mechanical properties, are great value for tailored wearable cloths. Considerable effort has been dedicated in both scientific and technological developments of electroconductive hydrogels for supercapacitor applications in the past few decades. The key to realize those functionalities depends on the processing of hydrogels with desirable electrochemical properties. The various hydrogel materials with such properties are now emerging and investigated by various scholars. The last decade has witnessed the development of high-performance supercapacitors using hydrogels. Here, in this review, the current status of different hydrogels for the production of flexible supercapacitors has been discussed. The electrochemical properties such as capacitance, energy density and cycling ability has been given attention. Diverse hydrogels, with their composites such as carbon-based hydrogels, cellulose-based hydrogels, conductive-polymer-based hydrogels and other hydrogels with excellent electromechanical properties are summarized. One could argue that hydrogels have played a central, starring role for the assembly of flexible supercapacitors for energy storage applications. This work stresses the importance of producing flexible supercapacitors for wearable clothing applications and the current challenges of hydrogel-based supercapacitors. The results of the review depicted that hydrogels are the next materials for the production of the flexible supercapacitor in a more sustainable way.

SELECTION OF CITATIONS
SEARCH DETAIL
...