Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(11): e0277027, 2022.
Article in English | MEDLINE | ID: mdl-36355747

ABSTRACT

The hydroclimate of South America is characterized by the South American summer monsoon (SASM), a tropical atmospheric circulation that induces a summer precipitation regime, and the Southern Hemisphere Westerlies (SHW), an extratropical atmospheric circulation that induces a winter precipitation regime. Stretched between these two systems is a NW-SE-oriented region dominated by descending air masses, resulting in the South American subtropical dry zone (SASDZ), also known as the arid diagonal. We investigated the Cerro Tuzgle cushion peatland (CTP) located on the Argentine Altiplano, north of the present-day SASDZ. Previous work revealed that the CTP was consistently in the SASM regime during the last 2900 cal yr BP. Here, we extend the CTP record to the middle Holocene covering the last 7200 cal yr BP to gain further knowledge of the Holocene development of the SASM and potential modulations of the SASDZ. The prominent feature of the entire record is a distinct and lasting transition centred around 3100 cal yr BP characterized by declining minerogenic content, increasing organic carbon content, rising stable carbon isotope values of organic matter and cellulose, and increasing stable oxygen isotope values of cellulose. We interpret this specific proxy pattern as a hydroclimatic transition towards less arid conditions at the CTP after 3100 cal yr BP. The transition corresponds with the end of the continuous Holocene strengthening of the SASM between 3500 cal yr BP and 3000 cal yr BP indicated by proxy records from north and east of the CTP. The CTP does not reflect this strengthening of the SASM and rather exhibits a threshold response indicating the effective establishment of the SASM summer precipitation regime at 24°S. This suggests that moisture supply during a more arid middle Holocene was provided by isotopically depleted precipitation, while moisture supply after the transition originated from isotopically enriched SASM summer precipitation. Concurrent hydroclimatic changes in the SHW winter precipitation regime south of the SASDZ are documented in a distinct lake level rise of Laguna Aculeo (33°50´S) around 3200 cal yr BP. These coinciding hydrological changes of the SASM and the SHW precipitation regimes indicate larger scale reorganisations of atmospheric circulation components, potentially connected to major modulations of the SASDZ. Thus, our CTP record sheds light on the middle to late Holocene development of the SASM at its southern limit and corroborates connections between the tropical and extratropical hydroclimate of South America.


Subject(s)
Geologic Sediments , Lakes , Cellulose , Seasons
2.
Tree Physiol ; 38(12): 1855-1870, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30265369

ABSTRACT

Among the environmental factors that have an effect on the isotopic signature of tree rings, the specific impact of soil moisture on the Δ13C and, in particular, the δ18O ratios has scarcely been investigated. We studied the effects of soil type and soil moisture (from moderately moist [Cambisol] to wet [Gleysol]) on the growth and isotopic signature of tree rings of Norway spruce (Picea abies [L.] H. Karst.), a widely distributed forest tree species in Central Europe, at a small spatial scale in a typical mature forest plantation in the low mountain ranges of Western Germany. The δ18O ratios were lower in rings of trees growing at the wettest microsite (Gleysol) than in tree rings from the microsite with moderately moist soil (Cambisol). This indicates higher uptake rates of 18O-unenriched soil water at the Gleysol microsite and corresponds to less negative soil water potentials and higher transpiration rates on the Gleysol plots. Contrary to our expectations, the basal area increments, the Δ13C ratios and the intrinsic water-use efficiency (calculated on the basis of δ13C) did not differ significantly between the Cambisol and the Gleysol microsites. For average values of each microsite and year investigated, we found a significantly positive correlation between δ13C and δ18O, which indicates a consistent stomatal control over gas exchange along the soil moisture gradient at comparable relative air humidity in the stand. As δ18O ratios of tree rings integrate responses of wood formation to soil moisture over longer periods of time, they may help to identify microsites differing in soil water availability along small-scale gradients of soil moisture under homogeneous climatic conditions and to explain the occurrence of particular tree species along those gradients in forest stands.


Subject(s)
Groundwater , Picea/growth & development , Soil , Trees/growth & development , Carbon Isotopes , Picea/chemistry , Plant Stems/growth & development , Switzerland , Trees/chemistry , Wood/chemistry , Wood/growth & development
3.
J Comput Chem ; 38(26): 2276-2282, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28718945

ABSTRACT

A numerically efficient yet highly accurate implementation of the crystal orbital Hamilton population (COHP) scheme for plane-wave calculations is presented. It is based on the projector-augmented wave (PAW) formalism in combination with norm-conserving pseudopotentials and allows to extract chemical interactions between atoms from band-structure calculations even for large and complex systems. The potential of the present COHP implementation is demonstrated by an in-depth analysis of the intensively investigated metal-insulator transition in atomic-scale indium wires self-assembled on the Si(111) surface. Thereby bond formation between In atoms of adjacent zigzag chains is found to be instrumental for the phase change. © 2017 Wiley Periodicals, Inc.

4.
Plant Cell Environ ; 40(8): 1392-1408, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28164319

ABSTRACT

The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress.


Subject(s)
Hordeum/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/cytology , Plant Roots/growth & development , Water/metabolism , Biological Transport , Cell Respiration , Hordeum/cytology , Lipids , Soil
5.
J Phys Chem Lett ; 8(4): 727-732, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28106402

ABSTRACT

Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.

6.
J Phys Chem B ; 120(24): 5572-80, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27245400

ABSTRACT

We study temperature-dependent hole transport in ideal crystal-phase poly(3-hexylthiophene) (P3HT) with ab initio calculations, with the aim of estimating the maximum mobility in the limit of perfect order. To this end, the molecular transfer integrals, phonon frequencies, and electron-phonon coupling constants are obtained from density functional theory (DFT). This allows the determination of transport properties without fit parameters. The strong coupling between charge carriers and vibrations leads to strong scattering and polaronic effects that impact carrier transport. By providing an intrinsic mobility limit to ideal P3HT crystals, this work allows identification of the impact of disorder on the temperature-dependent transport in real samples. A detailed analysis of the transport-relevant phonon modes is provided that gives microscopic insight into the polaron effects and hints toward mobility optimization strategies.

7.
Sci Rep ; 3: 3016, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24145394

ABSTRACT

Nonequilibrium patterns in open systems are ubiquitous in nature, with examples as diverse as desert sand dunes, animal coat patterns such as zebra stripes, or geographic patterns in parasitic insect populations. A theoretical foundation that explains the basic features of a large class of patterns was given by Turing in the context of chemical reactions and the biological process of morphogenesis. Analogs of Turing patterns have also been studied in optical systems where diffusion of matter is replaced by diffraction of light. The unique features of polaritons in semiconductor microcavities allow us to go one step further and to study Turing patterns in an interacting coherent quantum fluid. We demonstrate formation and control of these patterns. We also demonstrate the promise of these quantum Turing patterns for applications, such as low-intensity ultra-fast all-optical switches.

8.
Rapid Commun Mass Spectrom ; 27(6): 707-12, 2013 Mar 30.
Article in English | MEDLINE | ID: mdl-23418150

ABSTRACT

RATIONALE: Stable isotope ratio (δ(13)C, δ(18)O values) analyses of carbonates can be biased by CO(2) release from organic impurities. This is most critical for carbonate isotope analyses from bulk sediments containing comparably high amounts of organic matter (OM). Several methods have been developed to remove OM prior to analyses, but none of them can be universally applied. Moreover, pretreatment methods cause isotopic bias in themselves and should probably best be avoided. Thus, it is essential to have indicators for reliable isotope values of untreated carbonate-OM mixtures. METHODS: Artificial mixtures of organic compounds with a standard carbonate were analyzed to investigate the bias on carbonate isotope ratios caused by OM in the sample. The total-inorganic-carbon to total-organic-carbon ratio (TIC/TOC) was used as a measure for the " organic impurity" of the sample. The target was to evaluate TIC/TOC as a measure for sample quality and to define TIC/TOC thresholds for reliable isotope measurements of mixtures between calcium carbonate and organic compounds. RESULTS: The effect of organic impurities on carbonate stable isotope values depended on the specific OM compound and the respective TIC/TOC ratio. Different CO(2) release rates were determined for the pure OM compounds. A sample TIC/TOC ratio ≥0.3 was found to be a threshold for reliable measurements of the isotope composition of calcium carbonate. CONCLUSIONS: Bulk carbonate analyses from carbonate-OM mixtures are reliable only if the TIC/TOC values do not fall below certain thresholds. This has implications for carbonate isotope studies from bulk sediments for which the TIC/TOC ratios should be considered as an easy-to-determine measure for sample-quality assessment.


Subject(s)
Carbon Isotopes/analysis , Carbonates/chemistry , Geologic Sediments/chemistry , Oxygen Isotopes/analysis , Carbonates/analysis , Mass Spectrometry , Organic Chemicals/chemistry , Phosphoric Acids/chemistry
9.
Phys Rev Lett ; 108(24): 244301, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004275

ABSTRACT

We study fluid flow at the interfaces between elastic solids with randomly rough, self-affine surfaces. We show by numerical simulation that elastic deformation lowers the relative contact area at which contact patches percolate in comparison to traditional approaches to seals. Elastic deformation also suppresses leakage through contacts even far away from the percolation threshold. Reliable estimates for leakage can be obtained by combining Persson's contact mechanics theory with a slightly modified version of Bruggeman's effective-medium solution of the Reynolds equation.

10.
Front Plant Sci ; 3: 70, 2012.
Article in English | MEDLINE | ID: mdl-22645597

ABSTRACT

δ(15)N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil-plant N dynamics in relation to the restoration treatments. In particular, δ(15)N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ(15)N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ(15)N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ(15)N of the non-legume species, with very depleted δ(15)N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ(15)N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ(15)N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ(15)N signals. We discuss our results in the light of what the δ(15)N signals may be telling us about plant-soil N dynamics and their potential value as an indicator for N dynamics in restoration.

11.
Sci Total Environ ; 369(1-3): 178-87, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16842838

ABSTRACT

Characterization of bulk organic matter (OM) from lacustrine sediments of Frickenhauser See (northern Bavaria, Germany) reveals considerable variation during the last two millennia. Atomic C/N ratios and total organic carbon (TOC) content are positively correlated with arboreal pollen percentages which are used as an indicator of land-use intensity. Despite possible alterations of OM during early diagenesis, differences between three major lithological units are large enough to be interpreted as human impact on the sedimentation of OM in the lake. Sediments deposited prior to deforestation in the catchment area (unit C) are characterized by mean C/N ratios of 14.5, indicating a mixed composition of organic matter derived from lacustrine and terrestrial sources (forest litter). During a period of intensive soil erosion (ca. 1000 AD until 1870 AD; unit B), low C/N ratios of around 7.7 suggest that the relative proportion of forest litter decreased in favour of the lacustrine component and soil OM. Terrestrial plant detritus is only transported into the lake through numerous turbidite events. Deforestation and agriculture also coincide with a decreasing TOC content from an average value of 10.7% to 1.5%. This decrease is explained through a dilution effect due to the high input of minerogenic matter. Stable carbon isotopes indicate eutrophication of the lake due to the mobilization of nutrients through soil erosion. Starting around 1870 AD, organic-rich sapropelic sediments are deposited (unit A). A decline of turbidite events and increased wind shelter from trees due to reduced land-use intensity led to meromictic conditions. Consequently, negative excursions in the delta13C isotope record at the onset of unit A probably reflect methanogenesis under permanently anoxic conditions.


Subject(s)
Carbon/analysis , Conservation of Natural Resources , Fresh Water/analysis , Nitrogen/analysis , Environmental Monitoring , Geologic Sediments , Germany , Pollen , Sulfur/analysis , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...