Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(11): 114502, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-25166543

ABSTRACT

Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent of boundary conditions, systematic dissipation measurements in Rayleigh-Bénard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...