Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 7(1): 106-15, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16307464

ABSTRACT

The kinetics of annexin A1 binding to solid-supported lipid bilayers consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS; 4:1) has been investigated as a function of the calcium ion concentration in the bulk phase. Quartz crystal microbalance measurements in conjunction with scanning force microscopy, fluorescence microscopy, and computer simulations indicate that at a given Ca2+ concentration annexin A1 adsorbs irreversibly on membrane domains enriched in POPS. By contrast, annexin A1 adsorbs reversibly on the POPC-enriched phase, which is composed of single POPS molecules embedded within a POPC matrix. The overall area occupied by the POPS-enriched phase is controlled by the CaCl2 concentration. Monte Carlo simulations suggest that the area of the POPS-enriched phase increases by a factor of 7 when the Ca2+ concentration is changed from 0.01 to 1 mM.


Subject(s)
Annexin A1/chemistry , Biosensing Techniques/methods , Lipid Bilayers/chemistry , Membranes, Artificial , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Adsorption , Biosensing Techniques/instrumentation , Computer Simulation , Microscopy, Atomic Force , Microscopy, Fluorescence/methods , Monte Carlo Method , Particle Size , Stress, Mechanical , Surface Properties , Time Factors
3.
Langmuir ; 20(17): 7246-53, 2004 Aug 17.
Article in English | MEDLINE | ID: mdl-15301512

ABSTRACT

The dissipational quartz crystal microbalance (D-QCM) technology was applied to monitor the adsorption of vesicles to membrane-bound annexin A1 by simultaneously reading out the shifts in resonance frequency and dissipation. Solid-supported membranes (SSMs) composed of a chemisorbed octanethiol monolayer and a physisorbed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine monolayer were immobilized on the gold electrode of a 5 MHz quartz plate. Adsorption and desorption of annexin A1 to the SSM was followed by means of the QCM technique. After nonbound annexin A1 was removed from solution, the second membrane binding was monitored by the D-QCM technique, which allowed distinguishing between adsorbed and ruptured vesicles. The results show that vesicles stay always intact independent of the amount of bound annexin and the vesicle and buffer composition. It was shown that the vesicle adsorption process to membrane-bound annexin A1 is fully irreversible and is mediated by two-dimensional annexin clusters. For N-terminally truncated annexin A1, a decrease in the amount of bound vesicles was observed, which might be the result of fewer binding sites presented by the annexin A1 core. Supported by computer simulations, the results demonstrate that the vesicle adsorption process is electrostatically driven, but compared to those of sole electrostatic binding, the rate constants of adsorption are 1-2 orders of magnitude smaller, indicating the presence of a potential barrier.


Subject(s)
Annexin A1/chemistry , Biosensing Techniques/methods , Computer Simulation , Membranes, Artificial , Adsorption , Annexin A1/isolation & purification , Biosensing Techniques/instrumentation , Calcium/chemistry , Gold/chemistry , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Quartz/chemistry , Sulfhydryl Compounds/chemistry , Surface Properties , Time Factors
4.
Eur Biophys J ; 33(6): 555-61, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15004730

ABSTRACT

Adhesion and spreading of negatively charged unilamellar vesicles composed of POPG/POPC and DPPG/DPPC on positively charged self-assembly monolayers of 11-amino-1-undecanethiol were monitored by means of thickness shear mode (TSM) resonators with a fundamental frequency of 5 MHz. Changes of frequency and motional resistance upon vesicle adsorption were recorded as a function of surface charge density and lyotropic phase state of the lipids. From the readout of the TSM resonator, changes of the shape of the vesicles as well as the formation of supported lipid bilayers can be inferred in a quantitative manner. Increasing surface charge densities on the vesicles, which are tunable by the POPG content, led to decreasing frequency and resistance changes. At very high PG content, a lower limit of 3-12 Hz was found, indicative of the formation of planar bilayers due to vesicle rupture induced by the strong electrostatic interaction forces. Vesicles composed of DPPG/DPPC were less susceptible to deformation and rupture, a fact that can be attributed to the higher bending rigidity of DPPG/DPPC liposomes. More than 70 mol% of DPPG were needed to induce adhesion-controlled rupture of surface-attached vesicles, while only 30-50% of POPG were sufficient to form planar lipid bilayers on the quartz.


Subject(s)
Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Fusion , Phospholipids/chemistry , Macromolecular Substances/chemistry , Membrane Fluidity , Physical Stimulation/methods , Static Electricity , Tissue Adhesions , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...