Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 22(6): 4555-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25318416

ABSTRACT

The interaction between the Pseudomonas fluorescens biofilm and U(VI) were studied using extended X-ray absorption fine structure spectroscopy (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS). In EXAFS studies, the formation of a stable uranyl phosphate mineral, similar to autunite (Ca[UO2]2[PO4]2•2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2•10-12H2O) was observed. This is the first time such a biomineralization process has been observed in P. fluorescens. Biomineralization occurs due to phosphate release from the cellular polyphosphate, likely as a cell's response to the added uranium. It differs significantly from the biosorption process occurring in the planktonic cells of the same strain. TRLFS studies of the uranium-contaminated nutrient medium identified aqueous Ca2UO2(CO3)3 and UO2(CO3)3 (4-) species, which in contrast to the biomineralization in the P. fluorescens biofilm, may contribute to the transport and migration of U(VI). The obtained results reveal that biofilms of P. fluorescens may play an important role in predicting the transport behavior of uranium in the environment. They will also contribute to the improvement of remediation methods in uranium-contaminated sites.


Subject(s)
Biofilms , Groundwater/microbiology , Phosphates/chemistry , Pseudomonas fluorescens/physiology , Uranium Compounds/chemistry , Microscopy, Electron, Scanning , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/isolation & purification , Spectrometry, Fluorescence/methods , Thermodynamics , Uranium/chemistry , X-Ray Absorption Spectroscopy/methods
2.
Dalton Trans ; 42(19): 6979-88, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23508301

ABSTRACT

Bacterial cell walls have a high density of ionizable functional groups available for U(VI) binding, hence have a great potential to affect the speciation of this contaminant in the environment. The studied strain of the genus Paenibacillus is a novel isolate originating from the Mont Terri Opalinus clay formations (Switzerland) which are currently investigated as a potential host rock for future nuclear waste storage. U(VI) binding to the cell surface functional groups was studied by potentiometry combined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). Four bacterial U(VI) surface complexes were identified: R-COO-UO2(+), R-O-PO3-UO2, R-O-PO3H-UO2(+), and (R-O-PO3)2-UO2(2-). The corresponding complex stability constants were calculated to be 5.33 ± 0.08, 8.89 ± 0.04, 12.92 ± 0.05, and 13.62 ± 0.08, respectively. Hence UO2(2+) displays a moderate to strong interaction with the bacterial surface functional groups. In the acidic pH range (pH 3) UO2(2+) binding onto the cell envelope is governed by coordination to hydrogen phosphoryl sites. Upon increasing the pH an increasing coordination of UO2(2+) to carboxylic and deprotonated phosphoryl sites was found. At a pH greater than 7 uranyl hydroxides dominate the speciation. Additionally the bacteria-mediated release of inorganic phosphate in dependence on [U(VI)] at different pH values was studied to assess the influence of phosphate release on U(VI) mobilization.


Subject(s)
Aluminum Silicates/chemistry , Paenibacillus/metabolism , Soil Microbiology , Uranium/metabolism , Clay , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Hydrogen-Ion Concentration , Paenibacillus/isolation & purification , Potentiometry , Radioactive Waste , Spectrometry, Fluorescence , Uranium/chemistry
3.
Dalton Trans ; 41(43): 13370-8, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23007661

ABSTRACT

Microorganisms have great potential to bind and thus transport actinides in the environment. Thus microbes indigenous to designated nuclear waste disposal sites have to be investigated regarding their interaction mechanisms with soluble actinyl ions when assessing the safety of a planned repository. This paper presents results on the pH-dependent sorption of U(VI) onto Pseudomonas fluorescens isolated from the granitic rock aquifers at Äspö Hard Rock Laboratory, Sweden. To characterize the U(VI) interaction on a molecular level, potentiometric titration in combination with time-resolved laser-induced fluorescence spectroscopy (TRLFS) were applied. This paper as a result is one of the very few sources which provide stability constants of U(VI) complexed by cell surface functional groups. In addition the bacteria-mediated liberation of inorganic phosphate in dependence on [U(VI)] at different pHs was studied to judge the influence of phosphate release on U(VI) mobilization. The results demonstrate that in the acidic pH range U(VI) is bound by the cells mainly via protonated phosphoryl and carboxylic sites. The complexation by carboxylic groups can be observed over a wide pH range up to around pH 7. At neutral pH fully deprotonated phosphoryl groups are mainly responsible for U(VI) binding. U(VI) can be bound by P. fluorescens with relatively high thermodynamic stability.


Subject(s)
Pseudomonas fluorescens/metabolism , Uranium/metabolism , Actinoid Series Elements/chemistry , Actinoid Series Elements/metabolism , Adsorption , Cell Division , Hydrogen-Ion Concentration , Ions/chemistry , Phosphates/chemistry , Pseudomonas fluorescens/cytology , Spectrometry, Fluorescence , Uranium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...