Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Pain Rep ; 9(4): e1166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38910867

ABSTRACT

Introduction: In 85% of patients with chronic low back pain (CLBP), no specific pathoanatomical cause can be identified. Besides primary peripheral drivers within the lower back, spinal or supraspinal sensitization processes might contribute to the patients' pain. Objectives: The present study conceptualized the most painful area (MP) of patients with nonspecific CLBP as primarily affected area and assessed signs of peripheral, spinal, and supraspinal sensitization using quantitative sensory testing (QST) in MP, a pain-free area adjacent to MP (AD), and a remote, pain-free control area (CON). Methods: Fifty-nine patients with CLBP (51 years, SD = 16.6, 22 female patients) and 35 pain-free control participants individually matched for age, sex, and testing areas (49 years, SD = 17.5, 19 female participants) underwent a full QST protocol in MP and a reduced QST protocol assessing sensory gain in AD and CON. Quantitative sensory testing measures, except paradoxical heat sensations and dynamic mechanical allodynia (DMA), were Z-transformed to the matched control participants and tested for significance using Z-tests (α = 0.001). Paradoxical heat sensations and DMA occurrence were compared between cohorts using Fisher's exact tests (α = 0.05). The same analyses were performed with a high-pain and a low-pain CLBP subsample (50% quantile). Results: Patients showed cold and vibration hypoesthesia in MP (all Ps < 0.001) and mechanical hyperalgesia (P < 0.001) and more frequent DMA (P = 0.044) in AD. The results were mainly driven by the high-pain CLBP subsample. In CON, no sensory alterations were observed. Conclusion: Mechanical hyperalgesia and DMA adjacent to but not within MP, the supposedly primarily affected area, might reflect secondary hyperalgesia originating from spinal sensitization in patients with CLBP.

2.
Pain Rep ; 8(6): e1110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38027464

ABSTRACT

Introduction: First-line pain treatment is unsatisfactory in more than 50% of chronic pain patients, likely because of the heterogeneity of mechanisms underlying pain chronification. Objectives: This cross-sectional study aimed to better understand pathomechanisms across different chronic pain cohorts, regardless of their diagnoses, by identifying distinct sensory phenotypes through a cluster analysis. Methods: We recruited 81 chronic pain patients and 63 age-matched and sex-matched healthy controls (HC). Two distinct chronic pain cohorts were recruited, ie, complex regional pain syndrome (N = 20) and low back pain (N = 61). Quantitative sensory testing (QST) was performed in the most painful body area to investigate somatosensory changes related to clinical pain. Furthermore, QST was conducted in a pain-free area to identify remote sensory alterations, indicating more widespread changes in somatosensory processing. Results: Two clusters were identified based on the QST measures in the painful area, which did not represent the 2 distinct pain diagnoses but contained patients from both cohorts. Cluster 1 showed increased pain sensitivities in the painful and control area, indicating central sensitization as a potential pathomechanism. Cluster 2 showed a similar sensory profile as HC in both tested areas. Hence, either QST was not sensitive enough and more objective measures are needed to detect sensitization within the nociceptive neuraxis or cluster 2 may not have pain primarily because of sensitization, but other factors such as psychosocial ones are involved. Conclusion: These findings support the notion of shared pathomechanisms irrespective of the pain diagnosis. Conversely, different mechanisms might contribute to the pain of patients with the same diagnosis.

3.
Sci Rep ; 13(1): 11943, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488130

ABSTRACT

Endogenous pain modulation in humans is frequently investigated with conditioned pain modulation (CPM). Deficient pain inhibition is a proposed mechanism that contributes to neuropathic pain (NP) after spinal cord injury (SCI). Recent studies have combined CPM testing and neuroimaging to reveal neural correlates of CPM efficiency in chronic pain. This study investigated differences in CPM efficiency in relation to resting-state functional connectivity (rsFC) between 12 SCI-NP subjects and 13 age- and sex-matched healthy controls (HC). Twelve and 11 SCI-NP subjects were included in psychophysical and rsFC analyses, respectively. All HC were included in the final analyses. Psychophysical readouts were analysed to determine CPM efficiency within and between cohorts. Group differences of rsFC, in relation to CPM efficiency, were explored with seed-to-voxel rsFC analyses with pain modulatory regions, e.g. ventrolateral periaqueductal gray (vlPAG) and amygdala. Overall, pain inhibition was not deficient in SCI-NP subjects and was greater in those with more intense NP. Greater pain inhibition was associated with weaker rsFC between the vlPAG and amygdala with the visual and frontal cortex, respectively, in SCI-NP subjects but with stronger rsFC in HC. Taken together, SCI-NP subjects present with intact pain inhibition, but can be differentiated from HC by an inverse relationship between CPM efficiency and intrinsic connectivity of supraspinal regions. Future studies with larger cohorts are necessary to consolidate the findings in this study.


Subject(s)
Chronic Pain , Neuralgia , Spinal Cord Injuries , Humans , Pilot Projects , Brain
4.
Eur J Pain ; 26(10): 2162-2175, 2022 11.
Article in English | MEDLINE | ID: mdl-36008094

ABSTRACT

BACKGROUND: Central sensitization is considered a key mechanism underlying neuropathic pain (NP) after spinal cord injury (SCI). METHODS: Two novel proxies for central sensitization were investigated in thoracic SCI subjects with (SCI-NP) and without NP (SCI-nonNP) compared to healthy controls (HC). Specifically, temporal summation of pain (TSP) was investigated by examining pain ratings during a 2-min tonic heat application to the volar forearm. Additionally, palmar heat-induced sympathetic skin responses (SSR) were recorded in order to reveal changes in pain-autonomic interaction above the lesion level. Pain extent was assessed as the percentage of the body area and the number of body regions being affected by NP. RESULTS: Enhanced TSP was observed in SCI-NP (+66%) compared to SCI-nonNP (-75%, p = 0.009) and HC (-59%, p = 0.021). In contrast, no group differences were found (p = 0.685) for SSR habituation. However, pain extent in SCI-NP was positively correlated with deficient SSR habituation (body area: r = 0.561, p = 0.024; body regions: r = 0.564, p = 0.023). CONCLUSIONS: These results support the value of TSP and heat-induced SSRs as proxies for central sensitization in widespread neuropathic pain syndromes after SCI. Measures of pain-autonomic interaction emerged as a promising tool for the objective investigation of sensitized neuronal states in chronic pain conditions. SIGNIFICANCE: We present two surrogate readouts for central sensitization in neuropathic pain following SCI. On the one hand, temporal summation of tonic heat pain is enhanced in subjects with neuropathic pain. On the other hand, pain-autonomic interaction reveals potential advanced measures in chronic pain, as subjects with a high extent of neuropathic pain showed diminished habituation of pain-induced sympathetic measures. A possible implication for clinical practice is constituted by an improved assessment of neuronal hyperexcitability potentially enabling mechanism-based treatment.


Subject(s)
Chronic Pain , Neuralgia , Spinal Cord Injuries , Central Nervous System Sensitization , Chronic Disease , Chronic Pain/etiology , Hot Temperature , Humans , Neuralgia/etiology , Neuralgia/pathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology
5.
Eur J Pain ; 26(10): 2176-2187, 2022 11.
Article in English | MEDLINE | ID: mdl-36000307

ABSTRACT

BACKGROUND: Deficient endogenous pain modulation and increased nociceptive excitability are key features of central sensitization and can be assessed in humans by conditioned pain modulation (CPM, anti-nociceptive) and temporal summation of pain (TSP, pro-nociceptive), respectively. This study aimed to investigate these measures as proxies for central sensitization in subjects with chronic neuropathic pain (NP) after spinal cord injury (SCI). METHODS: In paraplegic subjects with NP (SCI-NP; n = 17) and healthy controls (HC; n = 17), parallel and sequential sham-controlled CPM paradigms were performed using pressure pain threshold at the hand, that is, above lesion level, as test stimulus. The conditioning stimulus was a noxious cold (verum) or lukewarm water bath (sham) applied contralaterally. Regarding pro-nociceptive mechanisms, a TSP protocol with individually-adjusted pressure pain stimuli at the thenar eminence was used. CPM and TSP magnitudes were related to intensity and spatial extent of spontaneous NP. RESULTS: Neither the parallel nor sequential sham-controlled CPM paradigm showed any significant inhibition of above-level pressure pain thresholds for SCI-NP or HC. Accordingly, no group difference in CPM capacity was found, however, subjects with more intense spontaneous NP showed lower inhibitory CPM capacity. TSP was observed for both groups but was not enhanced in SCI-NP. CONCLUSIONS: Our results do not support altered above-level anti- or pro-nociceptive mechanisms in SCI-NP compared with HC; however, they also highlight the relevance of spontaneous NP intensity with regards to the capacity of endogenous pain modulation in SCI subjects. SIGNIFICANCE: Central sensitization encompasses deficient endogenous pain modulation and increased nociceptive excitability. These two mechanisms can be assessed in humans by conditioned pain modulation and temporal summation of pain, respectively. Our data demonstrates a lack of descending pain inhibition only in subjects with severe neuropathic pain which may hint towards central sensitization at spinal and/or supra-spinal levels. Disentangling the mechanisms of endogenous pain modulation and neuronal hyperexcitability might improve mechanism-based treatment of neuropathic pain in subjects with spinal cord injury.


Subject(s)
Neuralgia , Spinal Cord Injuries , Humans , Neuralgia/etiology , Pain Measurement/methods , Pain Threshold/physiology , Spinal Cord Injuries/complications
6.
Neuroimage ; 247: 118742, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34863962

ABSTRACT

The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.


Subject(s)
Inhibition, Psychological , Neural Pathways/physiopathology , Pain/physiopathology , Adolescent , Adult , Aged , Amygdala/physiopathology , Brain/physiopathology , Brain Mapping , Cross-Sectional Studies , Female , Frontal Lobe/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Periaqueductal Gray/physiopathology , Rest , Switzerland , Young Adult
7.
Neurophysiol Clin ; 52(1): 44-57, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953638

ABSTRACT

OBJECTIVES: To test the robustness and signal-to-noise ratio of pain-related evoked potentials following intra-epidermal electrical stimulation (IES) compared to contact heat stimulation in healthy controls, and to explore the feasibility and potential added value of IES in the diagnosis of spinal disorders. METHODS: Pain-related evoked potentials induced by IES (custom-made, non-invasive, concentric triple pin electrode with steel pins protruding 1 mm from the anode, triangularly separated by 7-10 mm respectively) and contact heat stimulation were compared in 30 healthy subjects. Stimuli were applied to four different body sites. Two IES intensities, i.e., high (individually adapted to contact heat painfulness) and low (1.5 times pain threshold), were used. Additionally, a 40-year-old patient with unilateral dissociated sensory loss due to a multi-segmental syringohydromyelia was assessed comparing IES and contact heat stimulation. RESULTS: Both IES and contact heat stimulation led to robust pain-related evoked potentials recorded in all healthy subjects. Low intensity IES evoked potentials (14.1-38.0 µV) had similar amplitudes as contact heat evoked potentials (11.8-32.3 µV), while pain ratings on the numeric rating scale were lower for IES (0.8-2.5, compared to 1.5-3.9 for contact heat stimulation). High intensity IES led to evoked potentials with higher signal-to-noise ratio than low intensity IES and contact heat stimulation. The patient case showed impaired pain-related evoked potentials in segments with hypoalgesia for both IES modes. IES evoked potentials were preserved, with delayed latencies, while contact heat evoked potentials were abolished. CONCLUSION: IES evoked robust pain-related cortical potentials, while being less painful in healthy controls. The improved signal-to-noise ratio supports the use of IES for objective segmental testing of nociceptive processing. This was highlighted in a spinal syndrome case, where IES as well as contact heat stimulation reliably detected impaired segmental nociception.


Subject(s)
Evoked Potentials, Somatosensory , Evoked Potentials , Adult , Electric Stimulation , Evoked Potentials, Somatosensory/physiology , Humans , Pain , Pain Measurement , Pain Threshold/physiology
8.
J Neurotrauma ; 38(24): 3456-3466, 2021 12.
Article in English | MEDLINE | ID: mdl-34806429

ABSTRACT

The clinical evaluation of spinal afferents is an important diagnostic and prognostic marker for neurological and functional recovery after spinal cord injury (SCI). Particularly important regarding neuropathic pain following SCI is the function of the spinothalamic tract (STT) conveying nociceptive and temperature information. Here, we investigated the added value of neurophysiological methods revealing discomplete STT lesions; that is, residual axonal sparing in clinically complete STT lesions. Specifically, clinical pinprick testing and thermal thresholds were compared with objective contact heat-evoked potentials (CHEPs) and a novel measure of pain-autonomic interaction employing heat-induced sympathetic skin responses (SSR). The test stimuli (i.e., contact heat, pinprick) were applied below the lesion level in 32 subjects with thoracic SCI while corresponding heat-evoked responses (i.e., CHEPs and SSR) were recorded above the lesion (i.e., scalp and hand, respectively). Readouts of STT function were related to neuropathic pain characteristics. In subjects with abolished pinprick sensation, measures of thermosensation (10%), CHEPs (33%), and SSR (48%) revealed residual STT function. Importantly, SSRs can be used as an objective readout and when abolished, no other proxy indicated residual STT function. No relationship was found between STT function readouts and spontaneous neuropathic pain intensity and extent. However, subjects with clinically preserved STT function presented more often with allodynia (54%) than subjects with discomplete (13%) or complete STT lesions (18%). In individuals with absent pinprick sensation, discomplete STT lesions can be revealed employing pain-autonomic measures. The improved sensitivity to discerning STT lesion completeness might support the investigation of its association with neuropathic pain following SCI.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Neuralgia/etiology , Sensation Disorders/etiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Spinothalamic Tracts/physiopathology , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Neuralgia/diagnosis , Sensation Disorders/diagnosis , Spinal Cord Injuries/diagnosis , Thoracic Vertebrae
9.
Spinal Cord ; 59(12): 1256-1260, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34480090

ABSTRACT

STUDY DESIGN: Article. OBJECTIVE: ClinicalTrials.gov is an online trial registry that provides public access to information on past, present, and future clinical trials. While increasing transparency in research, the quality of the information provided in trial registrations is highly variable. The objective of this study is to assess key areas of information on ClinicalTrials.gov in interventional trials involving people with spinal cord injuries. SETTING: Interventional trials on ClinicalTrials.gov involving people with spinal cord injuries. METHODS: A subset of data on interventional spinal cord injury trials was downloaded from ClinicalTrials.gov. Reviewers extracted information pertaining to study type, injury etiology, spinal cord injury characteristics, timing, study status, and results. RESULTS: Of the interventional trial registrations reviewed, 62.5%, 58.6%, and 24.3% reported injury level, severity, and etiology, respectively. The timing of intervention relative to injury was reported in 72.8% of registrations. Most trials identified a valid study status (89.2%), but only 23.5% of those completed studies had posted results. CONCLUSIONS: Our review provides a snapshot of interventional clinical trials conducted in the field of spinal cord injury and registered in ClinicalTrials.gov. Areas for improvement were identified with regards to reporting injury characteristics, as well as posting results.


Subject(s)
Clinical Trials as Topic , Spinal Cord Injuries , Humans , Registries , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/therapy
10.
Hum Brain Mapp ; 42(12): 3733-3749, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34132441

ABSTRACT

Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting-state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub-regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective-motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.


Subject(s)
Cerebral Cortex/physiopathology , Connectome , Evoked Potentials/physiology , Nerve Net/physiopathology , Neuralgia/physiopathology , Nociception/physiology , Paraplegia/physiopathology , Spinal Cord Injuries/physiopathology , Thalamus/physiopathology , Adult , Aged , Cerebral Cortex/diagnostic imaging , Chronic Disease , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Neuralgia/diagnostic imaging , Paraplegia/diagnostic imaging , Paraplegia/etiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging , Thalamus/diagnostic imaging
11.
Spinal Cord ; 59(5): 529-537, 2021 May.
Article in English | MEDLINE | ID: mdl-33594250

ABSTRACT

STUDY DESIGN: Clinimetric cross-sectional cohort study in adults with paraplegic spinal cord injury (SCI) and neuropathic pain (NP). OBJECTIVE: To assess the reliability of standardized quantitative pain drawings in patients with NP following SCI. SETTING: Hospital-based research facility at the Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland. METHODS: Twenty individuals with chronic thoracic spinal cord injury and neuropathic pain were recruited from a national and local SCI registry. A thorough clinical examination and pain assessments were performed. Pain drawings were acquired at subsequent timepoints, 13 days (IQR 7.8-14.8) apart, in order to assess test-retest reliability. RESULTS: The average extent [%] and intensity [NRS 0-10] of spontaneous NP were 11.3% (IQR 4.9-35.8) and 5 (IQR 3-7), respectively. Pain extent showed excellent inter-session reliability (intraclass correlation coefficient 0.96). Sensory loss quantified by light touch and pinprick sensation was associated with larger pain extent (rpinprick = -0.47, p = 0.04; rlight touch = -0.64, p < 0.01). CONCLUSION: Assessing pain extent using quantitative pain drawings is readily feasible and reliable in human SCI. Relating information of sensory deficits to the presence of pain may provide distinct insights into the interaction of sensory deafferentation and the development of neuropathic pain after SCI.


Subject(s)
Neuralgia , Spinal Cord Injuries , Adult , Cross-Sectional Studies , Humans , Neuralgia/diagnosis , Neuralgia/etiology , Pain Measurement , Reproducibility of Results , Spinal Cord , Spinal Cord Injuries/complications
12.
Res Rep Urol ; 10: 219-225, 2018.
Article in English | MEDLINE | ID: mdl-30533402

ABSTRACT

PURPOSE: Diabetes is a grave and progressive condition characterized by debilitating complications. Diabetic bladder dysfunction (DBD) is a very common complication with no specific treatments currently available. Unlike other tissues affected by this disease, the bladder is subjected to two independent insults; 1) polyuria, created by the osmotic effects of glucose in the urine, and 2) hyperglycemia itself. Based on our understanding of inflammation as a major contributor to the underlying organ damage in several other diabetic complications, its presence in the bladder during DBD and the contribution of polyuria and hyperglycemia to its development were assessed. METHODS: Awake, restrained cystometry was performed on wild type C57BL/6 mice and diabetic (Akita) mice on a C57BL/6 background at 15 weeks of age. A subgroup of the Akita mice were treated with phlorizin, an inhibitor of sodium-glucose linked transporter types 1 and 2 that prevents glucose reabsorption in the kidney. All groups were assessed for serum glucose, 4-hour voiding totals, and inflammation in the bladder (Evans blue assay). RESULTS: Akita mice develop cystometrically-defined DBD by 15 weeks of age, as evidenced by an increase in urinary frequency, a decrease in voiding volume, and an increase in post-voiding residual volume. Phlorizin effectively normalized serum glucose in these animals while increasing the urine output. Inflammation in the bladder was present in the diabetic animals at this time point, but not detectable in animals receiving phlorizin. CONCLUSION: Inflammation in the bladder of diabetic mice correlates with the development of DBD and is triggered by hyperglycemia, not polyuria.

13.
Neurourol Urodyn ; 37(3): 952-959, 2018 03.
Article in English | MEDLINE | ID: mdl-28984997

ABSTRACT

AIMS: Denervation of the bladder is a detrimental consequence of bladder outlet obstruction (BOO). We have previously shown that, during BOO, inflammation triggered by the NLRP3 inflammasome in the urothelia mediates physiological bladder dysfunction and downstream fibrosis in rats. The aim of this study was to assess the effect of NLRP3-mediated inflammation on bladder denervation during BOO. METHODS: There were five groups of rats: (i) Control (no surgery); (ii) Sham-operated; (iii) BOO rats given vehicle; (iv) BOO rats given the NLRP3 inhibitor glyburide; and (v) BOO rats given the IL-1 receptor antagonist anakinra. BOO was constructed by ligating the urethra over a 1 mm catheter and removing the catheter. Medications were given prior to surgery and once daily for 12 days. Bladder sections were stained for PGP9.5, a pan-neuronal marker. Whole transverse sections were used to identify and count nerves while assessing cross-sectional area. For in vitro studies, pelvic ganglion neurons were isolated and treated with IL-1ß. After a 48 h incubation apoptosis, neurite length and branching were assessed. RESULTS: In obstructed bladders, the number of nerves decreased while total area increased, indicating a loss of cell number and/or branching. The decrease in nerve density was blocked by glyburide or anakinra, clearly implicating the NLRP3 pathway in denervation. In vitro analysis demonstrated that IL-1ß, a product of the inflammasome, induced apoptosis in pelvic ganglion neurons, suggesting one mechanism of BOO-induced denervation is NLRP3/IL-1ß triggered apoptosis. CONCLUSIONS: The NLRP3/IL-1ß-mediated inflammation pathway plays a significant role in denervation during BOO.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Bladder Neck Obstruction/metabolism , Urinary Bladder/innervation , Animals , Apoptosis/physiology , Denervation , Female , Inflammation/metabolism , Inflammation/physiopathology , Interleukin-1beta/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Urethra/metabolism , Urethra/physiopathology , Urinary Bladder/metabolism , Urinary Bladder/physiopathology , Urinary Bladder Neck Obstruction/physiopathology , Urothelium/metabolism , Urothelium/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...