Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Elife ; 122023 Sep 28.
Article in English | MEDLINE | ID: mdl-37767892

ABSTRACT

We still face fundamental gaps in understanding how molecular plastic changes of synapses intersect with circuit operation to define behavioral states. Here, we show that an antagonism between two conserved regulatory proteins, Spinophilin (Spn) and Syd-1, controls presynaptic long-term plasticity and the maintenance of olfactory memories in Drosophila. While Spn mutants could not trigger nanoscopic active zone remodeling under homeostatic challenge and failed to stably potentiate neurotransmitter release, concomitant reduction of Syd-1 rescued all these deficits. The Spn/Syd-1 antagonism converged on active zone close F-actin, and genetic or acute pharmacological depolymerization of F-actin rescued the Spn deficits by allowing access to synaptic vesicle release sites. Within the intrinsic mushroom body neurons, the Spn/Syd-1 antagonism specifically controlled olfactory memory stabilization but not initial learning. Thus, this evolutionarily conserved protein complex controls behaviorally relevant presynaptic long-term plasticity, also observed in the mammalian brain but still enigmatic concerning its molecular mechanisms and behavioral relevance.

2.
Sci Adv ; 9(7): eade7804, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800417

ABSTRACT

At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.


Subject(s)
Drosophila Proteins , Synapses , Animals , Synapses/metabolism , Drosophila/metabolism , Synaptic Vesicles/metabolism , Drosophila Proteins/metabolism , Synaptic Transmission
3.
Cell Rep ; 35(2): 108941, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852845

ABSTRACT

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Lysine/analogs & derivatives , Mitochondria/metabolism , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Spermidine/pharmacology , Administration, Oral , Aging, Premature/genetics , Aging, Premature/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Respiration/genetics , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Locomotion/physiology , Lysine/metabolism , Memory/physiology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Animal , Neurons/metabolism , Neurons/pathology , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Spermidine/metabolism , Eukaryotic Translation Initiation Factor 5A
4.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33822845

ABSTRACT

Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.


Subject(s)
Golgi Apparatus/metabolism , Synaptic Vesicles/metabolism , rab2 GTP-Binding Protein/metabolism , Animals , Axons/metabolism , Drosophila melanogaster/metabolism , Female , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/metabolism , Male , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Protein Transport/physiology , Synaptic Transmission/physiology
5.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32369542

ABSTRACT

At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a "hinge" in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs' conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.


Subject(s)
Carrier Proteins/chemistry , Central Nervous System/metabolism , Cytoskeletal Proteins/chemistry , Drosophila Proteins/chemistry , Drosophila melanogaster/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , rab3 GTP-Binding Proteins/chemistry , Animals , Animals, Genetically Modified , Binding Sites , Calcium Channels/genetics , Calcium Channels/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Central Nervous System/ultrastructure , Cloning, Molecular , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Larva/genetics , Larva/metabolism , Larva/ultrastructure , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synapses/ultrastructure , Synaptic Transmission , Synaptic Vesicles/ultrastructure , rab3 GTP-Binding Proteins/genetics , rab3 GTP-Binding Proteins/metabolism
6.
J Cell Sci ; 132(6)2019 03 18.
Article in English | MEDLINE | ID: mdl-30745339

ABSTRACT

Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.


Subject(s)
Axonal Transport/physiology , Drosophila Proteins/metabolism , Drosophila/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Phosphorylation , Presynaptic Terminals/metabolism , Synapses/metabolism
7.
Nat Neurosci ; 19(10): 1311-20, 2016 10.
Article in English | MEDLINE | ID: mdl-27526206

ABSTRACT

Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones (AZs). Efficacy of SV release depends on distance from SV to Ca(2+) channel, but molecular mechanisms controlling this are unknown. Here we found that distances can be defined by targeting two unc-13 (Unc13) isoforms to presynaptic AZ subdomains. Super-resolution and intravital imaging of developing Drosophila melanogaster glutamatergic synapses revealed that the Unc13B isoform was recruited to nascent AZs by the scaffolding proteins Syd-1 and Liprin-α, and Unc13A was positioned by Bruchpilot and Rim-binding protein complexes at maturing AZs. Unc13B localized 120 nm away from Ca(2+) channels, whereas Unc13A localized only 70 nm away and was responsible for docking SVs at this distance. Unc13A(null) mutants suffered from inefficient, delayed and EGTA-supersensitive release. Mathematical modeling suggested that synapses normally operate via two independent release pathways differentially positioned by either isoform. We identified isoform-specific Unc13-AZ scaffold interactions regulating SV-Ca(2+)-channel topology whose developmental tightening optimizes synaptic transmission.


Subject(s)
Calcium Channels/metabolism , Carrier Proteins/metabolism , Drosophila melanogaster/metabolism , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , Animals , Carrier Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , GTPase-Activating Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Male , Models, Neurological , Mutation , Phosphoproteins/metabolism , Protein Isoforms , rab3 GTP-Binding Proteins/metabolism
8.
Curr Opin Neurobiol ; 39: 69-76, 2016 08.
Article in English | MEDLINE | ID: mdl-27131423

ABSTRACT

Cognitive processes including memory formation and learning rely on a precise, local and dynamic control of synapse functionality executed by molecular changes within both presynaptic and postsynaptic compartments. Recently, the size of the presynaptic active zone scaffold, a cluster of large multi-domain proteins decorating the presynaptic plasma membrane, was found to directly scale with the action potential evoked release of synaptic vesicles. The challenge now is to constitute an integrated picture of how long-range axonal transport, local exchange and localization mechanisms at the scaffold and degradation processes are integrated to allow for dynamic and controlled scaffold rearrangements. Here we discuss findings from multiple model systems emphasizing both short-term and long-term regulations of active zone composition and function.


Subject(s)
Memory/physiology , Nerve Tissue Proteins/metabolism , Synapses/physiology , Humans , Synaptic Vesicles/metabolism
9.
Nat Commun ; 6: 8362, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26471740

ABSTRACT

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Drosophila Proteins/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Animals , Drosophila , Female , GTPase-Activating Proteins/metabolism , Male , PDZ Domains , Synapses/ultrastructure
10.
Nat Protoc ; 9(12): 2796-808, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25393777

ABSTRACT

Drosophila is widely used as a genetic model in questions of development, cellular function and disease. Genetic screens in flies have proven to be incredibly powerful in identifying crucial components for synapse formation and function, particularly in the case of the presynaptic release machinery. Although modern biochemical methods can identify individual proteins and lipids (and their binding partners), they have typically been excluded from use in Drosophila for technical reasons. To bridge this essential gap between genetics and biochemistry, we developed a fractionation method to isolate various parts of the synaptic machinery from Drosophila, thus allowing it to be studied in unprecedented biochemical detail. This is only possible because our protocol has unique advantages in terms of enriching and preserving endogenous protein complexes. The procedure involves decapitation of adult flies, homogenization and differential centrifugation of fly heads, which allow subsequent purification of presynaptic (and to a limited degree postsynaptic) components. It is designed to require only a rudimentary knowledge of biochemical fractionation, and it takes ∼3.5 h. The yield is typically 4 mg of synaptic membrane protein per gram of Drosophila heads.


Subject(s)
Central Nervous System/chemistry , Centrifugation/methods , Chemical Fractionation/methods , Drosophila/chemistry , Synapses/chemistry , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/isolation & purification , Head , Reproducibility of Results , Synaptic Transmission , Synaptosomes/chemistry , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...