Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 12(1): 195-202, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33296597

ABSTRACT

Primary amoebic meningoencephalitis (PAM), caused by the pathogenic free-living amoeba Naegleria fowleri, is a rare but fatal disease. Nowadays, no fully effective therapy is available to erradicate or prevent this disease. Natural products could constitute a promising source of useful bioactive compounds in drug discovery. The present study is a characterization of main active compounds from the ethanolic extract of Inula viscosa (Asteraceae) leaves against N. fowleri trophozoites. Four compounds (1-4) were successfully identified by spectroscopic techniques, but only inuloxin A displayed a potential antiamoebic activity with an IC50 of 21.27 µM. The specificity of this compound toward the studied strain leads us to analyze the insight into its mechanism of action by performing in vitro assays of programmed cell death markers and to discuss the structure-activity relationship (SAR). The obtained results demonstrated that inuloxin A interferes with various processes leading to membrane damage, mitochondria alteration, chromatin condensation, and ROS accumulation, which highlight features specific to apoptosis. The current findings could be a promising step for developing new effective drugs against PAM.


Subject(s)
Amoeba , Central Nervous System Protozoal Infections , Inula , Naegleria fowleri , Apoptosis , Brain , Central Nervous System Protozoal Infections/drug therapy , Sesquiterpenes
2.
J Sci Food Agric ; 97(10): 3300-3311, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27976408

ABSTRACT

BACKGROUND: Oxidation taking place during the use of oil leads to the deterioration of both nutritional and sensorial qualities. Natural antioxidants from herbs and plants are rich in phenolic compounds and could therefore be more efficient than synthetic ones in preventing lipid oxidation reactions. This study was aimed at the valorization of Tunisian aromatic plants and their active compounds as new sources of natural antioxidant preventing oil oxidation. RESULTS: Carnosol, rosmarinic acid and thymol were isolated from Rosmarinus officinalis and Thymus capitatus by column chromatography and were analyzed by nuclear magnetic resonance. Their antioxidant activities were measured by DPPH, ABTS and FRAP assays. These active compounds were added to soybean oil in different proportions using a simplex-centroid mixture design. Antioxidant activity and oxidative stability of oils were determined before and after 20 days of accelerated oxidation at 60 °C. CONCLUSION: Results showed that bioactive compounds are effective in maintaining oxidative stability of soybean oil. However, the binary interaction of rosmarinic acid and thymol caused a reduction in antioxidant activity and oxidative stability of soybean oil. Optimum conditions for maximum antioxidant activity and oxidative stability were found to be an equal ternary mixture of carnosol, rosmarinic acid and thymol. © 2016 Society of Chemical Industry.


Subject(s)
Abietanes/analysis , Cinnamates/analysis , Depsides/analysis , Food Additives/analysis , Food Preservation/methods , Soybean Oil/chemistry , Thymol/analysis , Food Preservation/instrumentation , Oxidation-Reduction , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...