Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835480

ABSTRACT

In this study, the effect of the ionic cross-linking mode on the ability to control physical properties and in vitro release behavior of the dexamethasone (DEX) drug from chitosan (CS) and chitosan/hydroxyapatite (CS/HA) beads was investigated. CS solutions without and with HA and DEX were dripped into two coagulation solutions, prepared with a non-toxic ionic crosslinker (sodium tripolyphosphate, TPP) and distilled water, one at pH = 9.0 and other at pH = 6.0. Optical microscopy (OM) and scanning electron microscopy (SEM) results showed changes on the surface topology of the beads, with a reduction of roughness for beads prepared at pH = 6.0 and an increase for the one prepared at pH = 9.0. The diameter and sphericity of the beads prepared at pH = 6.0 proved more uniform and had a larger pore size with a good interconnectivity framework. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) suggested a higher crosslinking degree for beads prepared at pH = 6.0, corroborated by X-ray diffraction profiles (XRD) analysis that indicated a decrease in the crystalline structure for such beads. In in vitro drug release data, all beads presented a sustained release during the studied period (24 h). The drug release rate was affected by the pH of the coagulation solution used in the preparation of the beads. The in vitro kinetics of the release process was of the Peppas-Sahlin model, controlled by both diffusion and relaxation of polymer chains or swelling (anomalous transport mechanism). Our results suggest that DEX-loaded CS/HA beads, crosslinked in TPP coagulation solution at pH = 9.0, led to a decrease in the DEX release rate and prolonged the release period. Thus, this composition might have prospective as a functional material for bone and cartilage tissue engineering.


Subject(s)
Chitosan/chemistry , Dexamethasone/administration & dosage , Durapatite/chemistry , Ions/chemistry , Microspheres , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Delayed-Action Preparations/chemistry , Dexamethasone/chemistry , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Materials (Basel) ; 11(10)2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30347857

ABSTRACT

The aim of this paper was to prepare, by the freeze-drying method, ionically crosslinked chitosan membranes with different contents of pentasodium tripolyphosphate (TPP) and loaded with 1,4-naphthoquinone (NQ14) drug, in order to evaluate how the physical crosslinking affects NQ14 release from chitosan membranes for cancer therapy application. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), swelling degree, and through in vitro drug release and cytotoxicity studies. According to the results, the molecular structure, porosity and hydrophilicity of the chitosan membranes were affected by TPP concentration and, consequently, the NQ14 drug release behavior from the membranes was also affected. The release of NQ14 from crosslinked chitosan membranes decreased when the cross-linker TPP quantity increased. Thus, depending on the TPP amount, the crosslinked chitosan membranes would be a potential delivery system to control the release of NQ14 for cancer therapy application. Lastly, the inhibitory potential of chitosan membranes ionically crosslinked with TPP and loaded with NQ14 against the B16F10 melanoma cell line was confirmed through in vitro cytotoxicity studies assessed via MTT assay. The anti-proliferative effect of prepared membranes was directly related to the amount of cross-linker and among all membranes prepared, such that one crosslinked with 0.3% of TPP may become a potential delivery system for releasing NQ14 drug for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...