Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21268458

ABSTRACT

ImportanceThere are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. ObjectiveTo evaluate the quantitative titers and durability of binding antibodies detected after SARS-CoV-2 infection and subsequent COVID-19 vaccination. DesignA prospective longitudinal evaluation included nine visits over 150 days; visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOW COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. SettingA nursing home during and after a SARS-CoV-2 outbreak. Participants11 consenting SARS-CoV-2-positive nursing home residents. Main Outcomes and MeasuresSARS-CoV-2 testing (BinaxNOW, RT-PCR, viral culture); quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). ResultsOf 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive but none were culture positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation [≤]90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Conclusions and RelevanceNursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21266812

ABSTRACT

Previous vaccine efficacy (VE) studies have estimated neutralizing and binding antibody concentrations that correlate with protection from symptomatic infection; how these estimates compare to those generated in response to SARS-CoV-2 infection is unclear. Here, we assessed quantitative neutralizing and binding antibody concentrations using standardized SARS-CoV-2 assays on 3,067 serum specimens collected during July 27, 2020-August 27, 2020 from COVID-19 unvaccinated persons with detectable anti-SARS-CoV-2 antibodies using qualitative antibody assays. Quantitative neutralizing and binding antibody concentrations were strongly positively correlated (r=0.76, p<0.0001) and were noted to be several fold lower in the unvaccinated study population as compared to published data on concentrations noted 28 days post-vaccination. In this convenience sample, [~]88% of neutralizing and [~]63-86% of binding antibody concentrations met or exceeded concentrations associated with 70% COVID-19 VE against symptomatic infection from published VE studies; [~]30% of neutralizing and 1-14% of binding antibody concentrations met or exceeded concentrations associated with 90% COVID-19 VE. These data support observations of infection-induced immunity and current recommendations for vaccination post infection to maximize protection against symptomatic COVID-19.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21263078

ABSTRACT

Oral fluids offer a non-invasive sampling method for the detection of antibodies. Quantification of IgA and IgG antibodies in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG antibodies against the prefusion-stabilized form of the SARS-CoV-2 spike protein. Normalization against total antibody isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 pre-pandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA: 95.5%; IgG: 89.7%) without compromising specificity (IgA: 99%; IgG: 97%). No cross reactivity with seasonal coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/mL and 0.30 ng/mL, respectively. Salivary IgA and IgG antibodies were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary antibody titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 weeks in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response.

SELECTION OF CITATIONS
SEARCH DETAIL
...