Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 6: 314, 2015.
Article in English | MEDLINE | ID: mdl-26834636

ABSTRACT

Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A), the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.

2.
Biochem J ; 463(3): 339-49, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25088759

ABSTRACT

The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation. Using a yeast two-hybrid screen, we identified dynamitin as a Nav1.5-interacting protein. Dynamitin is part of the microtubule-binding multiprotein complex dynactin. When overexpressed it is a potent inhibitor of dynein/kinesin-mediated transport along the microtubules by disrupting the dynactin complex and dissociating cargoes from microtubules. The use of deletion constructs showed that the C-terminal domain of dynamitin is essential for binding to the first intracellular interdomain of Nav1.5. Co-immunoprecipitation assays confirmed the association between Nav1.5 and dynamitin in mouse heart extracts. Immunostaining experiments showed that dynamitin and Nav1.5 co-localize at intercalated discs of mouse cardiomyocytes. The whole-cell patch-clamp technique was applied to test the functional link between Nav1.5 and dynamitin. Dynamitin overexpression in HEK-293 (human embryonic kidney 293) cells expressing Nav1.5 resulted in a decrease in sodium current density in the membrane with no modification of the channel-gating properties. Biotinylation experiments produced similar information with a reduction in Nav1.5 at the cell surface when dynactin-dependent transport was inhibited. The present study strongly suggests that dynamitin is involved in the regulation of Nav1.5 cell-surface density.


Subject(s)
Microtubule-Associated Proteins/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Binding Sites , Dynactin Complex , HEK293 Cells , Humans , Mice, Inbred BALB C , Microtubule-Associated Proteins/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Protein Structure, Tertiary , Two-Hybrid System Techniques
3.
Cardiovasc Res ; 79(3): 427-35, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18390900

ABSTRACT

AIMS: KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS: Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION: We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , KCNQ1 Potassium Channel/metabolism , Microtubules/metabolism , Myocytes, Cardiac/enzymology , Tubulin/metabolism , A Kinase Anchor Proteins/metabolism , Action Potentials , Animals , COS Cells , Chlorocebus aethiops , Guinea Pigs , KCNQ1 Potassium Channel/genetics , Kinetics , Male , Mice , Microtubules/drug effects , Myocytes, Cardiac/drug effects , Osmotic Pressure , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Transfection , Tubulin/genetics , Tubulin Modulators/pharmacology
4.
Circulation ; 115(1): 40-9, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-17190868

ABSTRACT

BACKGROUND: Myxomatous dystrophy of the cardiac valves affects approximately 3% of the population and remains one of the most common indications for valvular surgery. Familial inheritance has been demonstrated with autosomal and X-linked transmission, but no specific molecular abnormalities have been documented in isolated nonsyndromic forms. We have investigated the genetic causes of X-linked myxomatous valvular dystrophy (XMVD) previously mapped to chromosome Xq28. METHODS AND RESULTS: A familial and genealogical survey led us to expand the size of a large, previously identified family affected by XMVD and to refine the XMVD locus to a 2.5-Mb region. A standard positional cloning approach identified a P637Q mutation in the filamin A (FLNA) gene in all affected members. Two other missense mutations (G288R and V711D) and a 1944-bp genomic deletion coding for exons 16 to 19 in the FLNA gene were identified in 3 additional, smaller, unrelated families affected by valvular dystrophy, which demonstrates the responsibility of FLNA as a cause of XMVD. Among carriers of FLNA mutation, the penetrance of the disease was complete in men and incomplete in women. Female carriers could be mildly affected, and the severity of the disease was highly variable among mutation carriers. CONCLUSIONS: Our data demonstrate that FLNA is the first gene known to cause isolated nonsyndromic MVD. This is the first step to understanding the pathophysiological mechanisms of the disease and to defining pathways that may lead to valvular dystrophy. Screening for FLNA mutations could be important for families affected by XMVD to provide adequate follow-up and genetic counseling.


Subject(s)
Contractile Proteins/genetics , Gene Deletion , Heart Valve Diseases/genetics , Microfilament Proteins/genetics , Mutation, Missense , Pedigree , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Child , Female , Filamins , Genetic Linkage/genetics , Heart Valve Diseases/epidemiology , Humans , Male , Middle Aged , Molecular Sequence Data , Muscular Dystrophies/epidemiology , Muscular Dystrophies/genetics , Phenotype
5.
Circ Res ; 98(12): 1538-46, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16728661

ABSTRACT

The voltage-sensitive Na(+) channel Na(v)1.5 plays a crucial role in generating and propagating the cardiac action potential and its dysfunction promotes cardiac arrhythmias. The channel takes part into a large molecular complex containing regulatory proteins. Thus, factors that modulate its biosynthesis, localization, activity, and/or degradation are of great interest from both a physiological and pathological standpoint. Using a yeast 2-hybrid screen, we unveiled a novel partner, 14-3-3eta, interacting with the Na(v)1.5 cytoplasmic I interdomain. The interaction was confirmed by coimmunoprecipitation of 14-3-3 and full-length Na(v)1.5 both in COS-7 cells expressing recombinant Na(v)1.5 and in mouse cardiac myocytes. Using immunocytochemistry, we also found that 14-3-3 and Na(v)1.5 colocalized at the intercalated discs. We tested the functional link between Na(v)1.5 and 14-3-3eta using the whole-cell patch-clamp configuration. Coexpressing Na(v)1.5, the beta1 subunit and 14-3-3eta induced a negative shift in the inactivation curve of the Na(+) current, a delayed recovery from inactivation, but no changes in the activation curve or in the current density. The negative shift was reversed, and the recovery from inactivation was normalized by overexpressing the Na(v)1.5 cytoplasmic I interdomain interacting with 14-3-3eta. Reversal was also obtained with the dominant negative R56,60A 14-3-3eta mutant, suggesting that dimerization of 14-3-3 is needed for current regulation. Computer simulations suggest that the absence of 14-3-3 could exert proarrhythmic effects on cardiac electrical restitution properties. Based on these findings, we propose that the 14-3-3 protein is a novel component of the cardiac Na(+) channel acting as a cofactor for the regulation of the cardiac Na(+) current.


Subject(s)
14-3-3 Proteins/physiology , Muscle Proteins/metabolism , Myocardium/metabolism , Sodium Channels/metabolism , 14-3-3 Proteins/chemistry , Action Potentials/physiology , Animals , COS Cells , Chlorocebus aethiops , Computer Simulation , Dimerization , Electric Conductivity , Electrophysiology , Heart/physiology , Humans , Intracellular Membranes/metabolism , Models, Cardiovascular , Muscle Proteins/genetics , Muscle Proteins/physiology , NAV1.5 Voltage-Gated Sodium Channel , Protein Isoforms/physiology , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Sodium Channels/genetics , Sodium Channels/physiology , Transfection
6.
Dev Growth Differ ; 29(1): 93-103, 1987 Feb.
Article in English | MEDLINE | ID: mdl-37281399

ABSTRACT

Many studies suggest that MPF activation depends on protein phosphorylation or that MPF is itself a protein kinase. In the present report, cyclic variations of MPF activity have been correlated in vivo with changes in the extent of protein phosphorylation or in vitro with changes of a major protein kinase during the first cell cycles of fertilized starfish eggs. This cycling protein kinase neither requires cAMP nor Ca2+ . Neither colchicine nor aphidicoline, which inhibits cleavage and chromosome replication respectively, was found to suppress the synchronous and cyclic variations of both MPF and protein kinase activities. Protein synthesis was found to be required for both MPF and protein kinase activities to reappear after their simultaneous drop at the time of mitotic or meiotic cleavages. Production of either MPF or protein kinase activities is not the immediate result of protein synthesis since there is a delay at each cell cycle between the time when protein synthesis is required and the time when both MPF and protein kinase activities are produced. This suggests that both MPF and protein kinase activities might involve some post-translational modification of a precursor protein synthesized during the preceeding cell cycle.

7.
Dev Growth Differ ; 27(3): 251-262, 1985.
Article in English | MEDLINE | ID: mdl-37281094

ABSTRACT

Single nuclei (germinal vesicles) manually isolated from large oocytes of the starfish Echinaster sepositus, as well as the complementary anucleated oocytes, were used to investigate the early changes of protein phosphorylation which occur from 1-MeAde addition to germinal vesicle breakdown (GVBD). Stimulation of protein phosphorylation was already evident in the nucleus shortly after 1-MeAde addition (18 min, thus about 0.40x the time required for GVBD), although it began first in the cytoplasm. No translocation of phosphoprotein across the nuclear envelope was detected before GVBD. Presence of the nucleus is not required for the hormone to stimulate protein phosphorylation in the remaining part of the oocytetin:fact the patterns of protein phosphorylation in enucleated oocytes were found to be identical, whether enucleation was performed after or before hormonal treatment. Cytoplasm taken at the time of GVBD from maturing Echinaster oocytes induces meiotic maturation when transferred in stage VI immature oocytes of the amphibian Xenopus laevis.

SELECTION OF CITATIONS
SEARCH DETAIL
...