ABSTRACT
Memory is one of the most important capabilities of our mind since it determines our individuality. Memory formation involves different stages: acquisition, consolidation and retrieval. There are many studies about early stages, however little is known about memory retrieval. Retrieval is the use of learned information and represents a big problem in patients with memory deficits where the main issue is that they can learn but cannot remember. Previous findings have demonstrated that 5-hydroxytryptamine (5-HT) is a neurotransmitter involved in memory process. Hence, here we are exploring the role of 5-HT in memory retrieval by using its metabolic precursor l-tryptophan and several ligands at 5-HT1A and 5-HT7 receptors. Experimental protocol consisted of evaluating conditioned responses (%CR) after one week of interruption following autoshaping sessions for memory formation; a decrease of %CR was interpreted as memory decay. Systemic administration of: (1) l-tryptophan (50 and 100 mg/kg), (2) 5-HT1A receptor agonist 8-OH-DPAT (0.031 and 0.062 mg/kg), (3) the selective antagonist 5-HT1A receptor WAY 100635 (0.3 and 0.6 mg/kg), (4) the 5-HT7 receptor agonist, LP 211, in a dose-dependent manner (1, 2.5, 5.0 and 10.0 mg/kg) enhanced memory retrieval. Further, the 5-HT7 receptor antagonist, SB 269970 (10.0 mg/kg), had no effect. Finally, SB 269970 (10.0 mg/kg) significantly blocked memory retrieval enhancement produced by 10.0 mg/kg LP 211, but not that induced by 2.5 mg/kg LP 211.These results, taken together, suggest that activation of 5-HT1A and 5-HT7 receptors enhanced memory retrieval and these receptors may be therapeutic targets to improve long-term memory retrieval.
Subject(s)
Conditioning, Operant/drug effects , Memory, Long-Term/drug effects , Mental Recall/drug effects , Receptor, Serotonin, 5-HT1A/drug effects , Receptors, Serotonin/drug effects , Reinforcement, Psychology , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Tryptophan/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Behavior, Animal/drug effects , Male , Piperazines/pharmacology , Pyridines/pharmacology , Rats, Wistar , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin Antagonists/administration & dosage , Serotonin Receptor Agonists/administration & dosage , Tryptophan/administration & dosageABSTRACT
A decrease in the activation threshold of primary sensory neurons to transient receptor potential V1 (TRPV1) stimulation by serotonin 5-HT7 receptors has been reported but no confirmation if this might translate into facilitation of neurogenic inflammation has been provided. We analysed the modulation of capsaicin (CAP)-induced neurogenic inflammation in the rat hind paw by the selective 5-HT7 receptor agonist, LP-44, and the involvement of calcitonin gen-related peptide (CGRP) in this effect. Animals received intra-plantar injections (30⯵L) of vehicle, CAP (0.05%, 0.1% and 0.2%), LP-44 (7.5 and 15â¯nmol) and the combination of LP-44â¯+â¯CAP; then, the time course of the inflammatory responses was measured. The effect of the 5-HT7 receptor antagonist, SB-269970 (3â¯mg/kg,â¯s.c.), on responses produced by LP-44 alone and combined with CAP was tested. As expected, CAP produced concentration- and time-dependent inflammatory responses in the hind paw. Interestingly, LP-44 by itself also produced inflammation in a concentration- and time-dependent manner, and magnified CAP-induced responses. Systemic pre-treatment with SB-269970 significantly blunted LP-44 (15â¯nmol)-induced inflammation as well as magnified inflammatory responses produced by the combination of LP-44 (7.5 and 15â¯nmol)â¯+â¯CAP (0.1%) thus confirming the involvement of 5-HT7 receptors. Finally, the non-peptide CGRP receptor antagonist, BIBN4096 (3â¯mg/kg,â¯s.c.), strongly inhibited the potentiated inflammatory responses induced by LP-44 (7.5 and 15â¯nmol)â¯+â¯CAP (0.1%) thus substantiating their neurogenic nature. Thus, sensitization of CAP-sensitive primary sensory neurons by 5-HT7 receptors may result in facilitation of neurogenic inflammation involving CGRP in the rat hind paw.
Subject(s)
Neurogenic Inflammation/drug therapy , Neurons, Afferent/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, Serotonin/metabolism , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Capsaicin/administration & dosage , Capsaicin/metabolism , Foot/pathology , Humans , Male , Neurogenic Inflammation/metabolism , Neurogenic Inflammation/pathology , Neurons, Afferent/drug effects , Phenols/administration & dosage , Rats , Receptors, Serotonin/administration & dosage , Substance P/administration & dosage , Sulfonamides/administration & dosageABSTRACT
OBJECTIVE: To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. MATERIAL AND METHODS: Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0-12 min) and the late phase (Phase II: 12-30 min). RESULTS: LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. CONCLUSION: Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain.
Subject(s)
Analgesics/therapeutic use , Facial Pain/drug therapy , Piperazines/therapeutic use , Receptors, Serotonin , Serotonin Receptor Agonists/therapeutic use , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Facial Pain/chemically induced , Formaldehyde , Male , Mice , Mice, Inbred BALB C , Reproducibility of Results , Substantia Gelatinosa/drug effects , Time Factors , Treatment Outcome , Trigeminal Nerve/drug effectsABSTRACT
ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. Material and Methods Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0–12 min) and the late phase (Phase II: 12–30 min). Results LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. Conclusion Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain.
Subject(s)
Animals , Male , Mice , Piperazines/therapeutic use , Facial Pain/drug therapy , Receptors, Serotonin , Serotonin Receptor Agonists/therapeutic use , Analgesics/therapeutic use , Substantia Gelatinosa/drug effects , Time Factors , Trigeminal Nerve/drug effects , Facial Pain/chemically induced , Reproducibility of Results , Treatment Outcome , Disease Models, Animal , Dose-Response Relationship, Drug , Formaldehyde , Mice, Inbred BALB CABSTRACT
The effects of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligand was microinjected into the horizontal limb of the diagonal band of Broca (HDB) and the laterodorsal tegmental nucleus (LDT) during the light period of the 12-h light/12-h dark cycle. For comparative purposes the compound was administered systemically and, in addition, injected directly into the dorsal raphe nucleus (DRN). Microinjection of SB-269970 into the HDB and the DRN induced a significant reduction of rapid-eye-movement sleep (REMS). Similar effects were observed after systemic administration of the 5-HT7 receptor antagonist. On the other hand, local infusion of the compound into the LDT provoked the opposite effect. It is proposed that the deactivation of GABAergic cells located in the HDB, DRN and LDT is responsible for the changes induced by SB-269970 on REM sleep values. It is suggested that the antidepressant effect of the 5-HT7 receptor antagonist could partly depend on the involvement of neuronal systems located in the DRN and the HDB.
Subject(s)
Brain Stem/drug effects , Phenols/pharmacology , Prosencephalon/drug effects , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Sleep, REM/drug effects , Sulfonamides/pharmacology , Animals , Brain Stem/physiology , Male , Microinjections , Prosencephalon/physiology , Rats , Rats, WistarABSTRACT
OBJECTIVE: To explore whether pharmacological stimulation of the 5-hydroxytryptamine(7) (5-HT(7) ) receptor modulates Fos-like immunoreactivity in the trigeminal nucleus caudalis of rats. BACKGROUND: The serotonin 5-HT(7) receptor was proposed to be involved in migraine pathogenesis and evidence suggests it plays a role in peripheral nociception and hyperalgesia through an action on sensory afferent neurons. METHODS: The potential activating or sensitizing role of 5-HT(7) receptors on trigeminal sensory neurons, as visualized by Fos-like immunoreactivity in the superficial layers of the trigeminal nucleus caudalis in rats, was investigated using the 5-HT(7) receptor agonist, LP-211, in the absence and the presence of intracisternal capsaicin, respectively. The agonist effect was characterized with the 5-HT(7) receptor antagonist, SB-656104. Male Wistar rats received a subcutaneous injection of LP-211, SB-656104, and SB-656104 + LP-211. They were then anesthetized and prepared to receive an intracisternal injection of capsaicin or its vehicle. Animals were perfused and brains removed; sections of the brain stem from the area postrema to the CI level were obtained and processed for Fos immunohistochemistry. RESULTS: Capsaicin but not its vehicle induced Fos-like immunoreactivity within laminae I and II of trigeminal nucleus caudalis. Pretreatment with LP-211 had no effect on Fos-like immunoreactivity but strongly increased the response produced by capsaicin; this effect was abolished by SB-656104. Interestingly, capsaicin-induced Fos-like immunoreactivity was abolished by SB-656104 pretreatment thus suggesting involvement of endogenous 5-HT. CONCLUSIONS: Data suggest that 5-HT(7) receptors increase activation of meningeal trigeminovascular afferents and/or transmission of nociceptive information in the brain stem. This mechanism could be relevant in migraine and its prophylactic treatment.
Subject(s)
Capsaicin/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Serotonin/metabolism , Trigeminal Caudal Nucleus/metabolism , Animals , Male , Rats , Rats, Wistar , Trigeminal Caudal Nucleus/drug effectsABSTRACT
The effects of LP-44, a selective 5-HT7 receptor agonist, and of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligands were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of LP-44 (1.25-5.0 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Similar effects were observed after the direct administration into the DRN of SB-269970 (0.5-1.0 mM). Pretreatment with a dose of SB-269970 (0.5 mM) that significantly affects sleep variables antagonized the LP-44 (2.5 mM)-induced suppression of REMS and of the number of REM periods. It is proposed that the suppression of REMS after microinjection of LP-44 into the DRN is related, at least in part, to the activation of GABAergic neurons in the DRN that contribute to long projections that reach, among others, the laterodorsal and pedunculopontine tegmental nuclei involved in the promotion of REMS.