Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.423
Filter
1.
Front Pharmacol ; 15: 1415844, 2024.
Article in English | MEDLINE | ID: mdl-38966558

ABSTRACT

Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, ß-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.

2.
Chem Biol Interact ; : 111133, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969277

ABSTRACT

Psoraleae Fructus (PF, Psoralea corylifolia L.), a traditional medicine with a long history of application, is widely used clinically for the treatment of various diseases. However, the reports of PF-related adverse reactions, such as hepatotoxicity, phototoxic dermatitis, and allergy, are increasing year by year, with liver injury being the mostly common. Our previous studies have demonstrated that PF and its preparations can cause liver injury in lipopolysaccharide (LPS)-mediated susceptibility mouse model, but the mechanism of PF-related liver injury is unclear. In this study, we showed that PF and bavachinin, a major component of PF, can directly induce the expression of caspase-1 and interleukin-1ß (IL-1ß), indicating that PF and bavachinin can directly triggered the activation of inflammasome. Furthermore, pretreatment with NLR family pyrin domain-containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome inhibitors, containing MCC950, ODN TTAGGG (ODN) and carnosol, all significantly reversed bavachinin-induced inflammasome activation. Mechanistically, bavachinin dose-dependently promote Gasdermin D (GSDMD) post-shear activation and then induce mitochondrial reactive oxygen species (mtROS) production and this effect is markedly inhibited by pretreatment with N-Acetylcysteine amide (NAC). In addition, combination treatment of LPS and bavachinin significantly induced liver injury in mice, but not LPS or bavachinin alone, and transcriptome analysis further validated these results. Thus, PF and bavachinin can induce the activation of inflammasome by promoting GSDMD cleavage and cause hepatotoxicity in mice. Therefore, PF, bavachinin, and PF-related preparations should be avoided in patients with inflammasome activation-associated diseases.

3.
J Clin Virol ; 174: 105710, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954911

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous and oncogenic virus that is associated with various malignancies and non-malignant diseases and EBV DNA detection is widely used for the diagnosis and prognosis prediction for these diseases. The dried blood spots (DBS) sampling method holds great potential as an alternative to venous blood samples in geographically remote areas, for individuals with disabilities, or for newborn blood collection. Therefore, the objective of this study was to assess the viability of detecting EBV DNA load from DBS. Matched whole blood and DBS samples were collected for EBV DNA extraction and quantification detection. EBV DNA detection in DBS presented a specificity of 100 %. At different EBV DNA viral load in whole blood, the sensitivity of EBV DNA detection in DBS was 38.78 % (≥1 copies/mL), 43.18 % (≥500 copies/mL), 58.63 % (≥1000 copies/mL), 71.43 % (≥2000 copies/mL), 82.35 % (≥4000 copies/mL), and 92.86 % (≥5000 copies/mL), respectively. These results indicated that the sensitivity of EBV DNA detection in DBS increased with elevating viral load. Moreover, there was good correlation between EBV DNA levels measured in whole blood and DBS, and on average, the viral load measured in whole blood was about 6-fold higher than in DBS. Our research firstly demonstrated the feasibility of using DBS for qualitative and semi-quantitative detection of EBV DNA for diagnosis and surveillance of EBV-related diseases.

4.
Small ; : e2404347, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958084

ABSTRACT

Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.

5.
J Chromatogr A ; 1730: 465134, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38959655

ABSTRACT

The unique properties of pillar[5]arene, including hydrophobic cavities, π-π conjugated and easy modification, make it a promising candidate as stationary phase for HPLC. Herein, we fabricated a novel propanediamine modified pillar[5]arene bonded silica as the stationary phase (PDA-BP5S) for reversed-phase liquid chromatography (RPLC). Benefiting from the significant hydrophobicity, π-π conjugative, p-π effect, and hydrogen bonding, the PDA-BP5S packed column showed high separation performance of versatile analytes involving polycyclic aromatic hydrocarbons, alkyl benzenes, phenols, arylamine, phenylethane/styrene/ phenylacetylene, toluene/m-xylene/mesitylene, halobenzenes, benzenediol and nitrophenol isomers. Especially, the separation of halobenzenes appeared to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions, which was further confirmed by molecular dynamics simulation. The satisfactory separation and repeatability revealed the promising prospects of amine-pillar[5]arene-based stationary phase for RPLC.

6.
Front Plant Sci ; 15: 1407700, 2024.
Article in English | MEDLINE | ID: mdl-38978517

ABSTRACT

Rubber tree (Hevea brasiliensis) is reproduced by bud grafting for commercial planting, but significant intraclonal variations exist in bud-grafted clones. DNA methylation changes related to grafting may be partly responsible for intraclonal variations. In the current study, whole-genome DNA methylation profiles of grafted rubber tree plants (GPs) and their donor plants (DPs) were evaluated by whole-genome bisulfite sequencing. Data showed that DNA methylation was downregulated and DNA methylations in CG, CHG, and CHH sequences were reprogrammed in GPs, suggesting that grafting induced the reprogramming of DNA methylation. A total of 5,939 differentially methylated genes (DMGs) were identified by comparing fractional methylation levels between GPs and DPs. Transcriptional analysis revealed that there were 9,798 differentially expressed genes (DEGs) in the DP and GP comparison. A total of 1,698 overlapping genes between DEGs and DMGs were identified. These overlapping genes were markedly enriched in the metabolic pathway and biosynthesis of secondary metabolites by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Global DNA methylation and transcriptional analyses revealed that reprogramming of DNA methylation is correlated with gene expression in grafted rubber trees. The study provides a whole-genome methylome of rubber trees and an insight into the molecular mechanisms underlying the intraclonal variations existing in the commercial planting of grafted rubber trees.

7.
Oncoimmunology ; 13(1): 2376264, 2024.
Article in English | MEDLINE | ID: mdl-38988824

ABSTRACT

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Subject(s)
Apoptosis , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Escape/genetics , Cell Line, Tumor , Cell Proliferation , Male , Female , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immune Evasion , Immunoglobulins
8.
Front Pharmacol ; 15: 1422245, 2024.
Article in English | MEDLINE | ID: mdl-38989143

ABSTRACT

Background: Changes in intestinal flora and intestinal barrier in patients with preclinical and diagnosed rheumatoid arthritis (RA) suggest that intestinal flora and intestinal barrier play an important role in the induction and persistence of RA. Huangqin Qingre Chubi Capsule (HQC) is a clinically effective herbal formula for the treatment of RA, but its therapeutic mechanism has not been fully clarified. Materials and methods: In this study, real-time qPCR (RT-qPCR), 16SrRNA sequencing, Western blot (WB), immunofluorescence and other methods were used to investigate whether HQC inhibited RA. Results: Based on research in collages-induced arthritis (CIA) model in mice, human colon cancer cell line (Caco-2), and fibroblast-like synoviocytes (FLS) from RA patients, we found that intestinal flora was disturbed in CIA model group, intestinal barrier was damaged, and lipolyaccharide (LPS) level was increased, and HQC could regulate intestinal flora and intestinal barrier and reduce LPS translocation into blood. Antibiotic depletion weakened the anti-RA effect of HQC, and HQC fecal microbiota transplantation alleviated RA pathology. In addition, LPS increased the expression of RA pathologic factors MMP3, Fibronectin and inflammatory factors IL-6, TNF-α, IL-1ß and IL-8, indicating that elevated peripheral blood level of LPS was related to RA pathology. Conclusion: The dysregulation of intestinal flora and the disruption of intestinal barrier are significant factors in the development of RA. HQC improves RA by regulating intestinal flora, intestinal barrier and inhibiting LPS translocation into blood. The study unveiles RA's new pathogenesis and laid a scientific groundwork for advancing HQC therapy for RA.

9.
J Am Chem Soc ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990700

ABSTRACT

Dynamically populating triplet excitons under external stimuli is desired to develop smart optoelectronic materials, but it remains a formidable challenge. Herein, we report a resonance-induced excited state regulation strategy to dynamically modulate the triplet exciton population by introducing a self-adaptive N-C═O structure to phosphors. The developed phosphors activated under high-power ultraviolet irradiation exhibited enhanced photoactivated organic ultralong room temperature phosphorescence (PA-OURTP) with lifetimes of up to ∼500 ms. The enhanced PA-OURTP was ascribed to activated N-C═O resonance variation-induced intersystem crossing to generate excess triplet excitons. The excellent PA-OURTP performance and ultralong deactivation time under ambient conditions of the developed materials could function as a reusable recorded medium for time-sensitive information encryption through optical printing. This study provides an effective approach to dynamically regulating triplet excitons and offers valuable guidance to develop high-performance PA-OURTP materials for security printing applications.

10.
Inorg Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990898

ABSTRACT

Transition metal phosphide/sulfide (TMP/TMS) heterostructures are attractive supercapacitor electrode materials due to their rapid redox reaction kinetics. However, the limited active sites and weak interfacial interactions result in undesirable electrochemical performance. Herein, based on constructing the NiCo-LDH template on Ni-MOF-derived Ni2P/NC, Ni2P/NC@CoNi2S4 with a porous heterostructure is fabricated by sulfurizing the intermediate and is used for supercapacitors. The exposed Ni sites in the phosphating-obtained Ni2P/NC coordinate with OH- to in situ form an intimate-connected Ni2P/NC@NiCo-LDH, and the CoNi2S4 nanosheets retaining the original cross-linked structure of NiCo-LDH integrate the porous carbon skeleton of Ni2P/NC to yield a hierarchical pore structure with rich electroactive sites. The conducting carbon backbone and the intense electronic interactions at the interface accelerate electron transfer, and the hierarchical pores offer sufficient ion diffusion paths to accelerate redox reactions. These confer Ni2P/NC@CoNi2S4 with a high specific capacitance of 2499 F·g-1 at 1 A·g-1. The NiCo-LDH template producing a tight interfacial connection, significantly enhances the stability of the heterostructure, leading to a 91.89% capacitance retention after 10,000 cycles. Moreover, the fabricated Ni2P/NC@CoNi2S4//NC asymmetric supercapacitor exhibits an excellent energy density of 73.68 Wh kg-1 at a power density of 700 W kg-1, superior to most reported composites of TMPs or TMSs.

11.
Neuro Oncol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991556

ABSTRACT

BACKGROUND: Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. METHODS: A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10,338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at five centers. Five radiology residents and five attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared. RESULTS: The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (p = 0.67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (p < 0.001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs. 0.03 [0.03-0.03]; p < 0.001), but a similar time reduction (reduced median time, 44% [40-47%] vs. 40% [37-44%]; p = 0.92) with BMSS assistance. CONCLUSIONS: The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.

12.
Sci Total Environ ; : 174395, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992353

ABSTRACT

Ginger, a vegetable export from China, is well-known for its spicy flavour and use in traditional Chinese medicine. By examining the interactions of ginger plants' microbiome and metabolome, we can gain insights to advance agriculture, the environment, and other fields. Our study used metataxonomic analysis to investigate ginger plants' prokaryotic and fungal microbiomes in open fields and greenhouses. We also conducted untargeted metabolomic analysis to identify specific metabolites closely associated with ginger microbiome assembly under both agricultural conditions. Various bacteria and fungi were classified as generalists or specialists based on their ability to thrive in different environments and microbial niches. Our results indicate that ginger plants grown in greenhouses have a greater prokaryotic diversity, while those grown in open fields exhibit a greater fungal diversity. We have identified specific co-occurring prokaryotic and fungal genera associated with ginger plant agroecosystems that can enhance the health and growth of ginger plants while maintaining a healthy environment. In the open field these genera include Sphingomonas, Methylobacterium-Methylorubrum, Bacillus, Acidovorax, Rhizobium, Microbacterium, unclassified_f_Comamonadaceae, Herbaspirillum, Klebsiella, Enterobacter, Chryseobacterium, Nocardioides, Subgroup_10, Enterococcus, Pseudomonas, Devosia, g_unclassified_f_Chaetomiaceae, Pseudaleuria, Mortierella, Cheilymenia, and Pseudogymnoascus. In the greenhouse, the enriched genera were Rhizobium, Stenotrophomonas, Aureimonas, Bacillus, Nocardioides, Pseudomonas, Enterobacter, Delftia, Trichoderma, Mortierella, Cheilymenia, Schizothecium, and Actinomucor. Our research has identified several previously unknown microbial genera for ginger plant agroecosystems. Furthermore, our study has important implications for understanding the correlation between ginger's microbiome and metabolome profiles in diverse environments and may pave the way for future research. Specific microbial genera in crop production environments are associated with essential metabolites, including Safingol, Docosatrienoic acid, P-acetaminophen, and Hypoglycin B.

13.
Anal Chem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994642

ABSTRACT

The properties of surface plasmons are notoriously dependent on the supporting materials system. However, new capabilities cannot be obtained until the technique of surface plasmon enabled by advanced two-dimensional materials is well understood. Herein, we present the experimental demonstration of surface plasmon polaritons (SPPs) supported by single-layered MXene flakes (Ti3C2Tx) coating on an optical microfiber and its application as an ammonia gas sensor. Enabled by its high controllability of chemical composition, unique atomistically thin layered structure, and metallic-level conductivity, MXene is capable of supporting not only plasmon resonances across a wide range of wavelengths but also a selective sensing mechanism through frequency modulation. Theoretical modeling and optics experiments reveal that, upon adsorbing ammonia molecules, the free electron motion at the interface between the SiO2 microfiber and the MXene coating is modulated (i.e., the modulation of the SPPs under applied light), thus inducing a variation in the evanescent field. Consequently, a wavelength shift is produced, effectively realizing a selective and highly sensitive ammonia sensor with a 100 ppm detection limit. The MXene supported SPPs open a promising path for the application of advanced optical techniques toward gas and chemical analysis.

14.
PeerJ Comput Sci ; 10: e2167, 2024.
Article in English | MEDLINE | ID: mdl-38983239

ABSTRACT

Adaptive gradient algorithms have been successfully used in deep learning. Previous work reveals that adaptive gradient algorithms mainly borrow the moving average idea of heavy ball acceleration to estimate the first- and second-order moments of the gradient for accelerating convergence. However, Nesterov acceleration which uses the gradient at extrapolation point can achieve a faster convergence speed than heavy ball acceleration in theory. In this article, a new optimization algorithm which combines adaptive gradient algorithm with Nesterov acceleration by using a look-ahead scheme, called NALA, is proposed for deep learning. NALA iteratively updates two sets of weights, i.e., the 'fast weights' in its inner loop and the 'slow weights' in its outer loop. Concretely, NALA first updates the fast weights k times using Adam optimizer in the inner loop, and then updates the slow weights once in the direction of Nesterov's Accelerated Gradient (NAG) in the outer loop. We compare NALA with several popular optimization algorithms on a range of image classification tasks on public datasets. The experimental results show that NALA can achieve faster convergence and higher accuracy than other popular optimization algorithms.

15.
J Hazard Mater ; 476: 135148, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986415

ABSTRACT

Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167326, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960052

ABSTRACT

BACKGROUND: Environmental stress is a significant contributor to the development of inflammatory bowel disease (IBD). The involvement of temperature stimulation in the development of IBD remains uncertain. Our preliminary statistical data suggest that the prevalence of IBD is slightly lower in colder regions compared to non-cold regions. The observation indicates that temperature changes may play a key role in the occurrence and progression of IBD. Here, we hypothesized that cold stress has a protective effect on IBD. METHODS: The cold exposure model for mice was placed in a constant temperature and humidity chamber, maintained at a temperature of 4 °C. Colitis models were induced in the mice using TNBS or DSS. To promote the detection methods more clinically, fluorescence confocal endoscopy was used to observe the mucosal microcirculation status of the colon in the live model. Changes in the colonic wall of the mice were detected using 9.4 T Magnetic Resonance Imaging (MRI) imaging and in vivo fluorescence imaging. Hematoxylin and eosin (H&E) and Immunofluorescence (IF) staining confirmed the pathological alterations in the colons of sacrificed mice. Molecular changes at the protein level were assessed through Western blotting and Enzyme-Linked Immunosorbent Assay (ELISA) assays. RNA sequencing (RNA-seq) and metabolomics (n = 18) were jointly analyzed to investigate the biological changes in the colon of mice treated by cold exposure. RESULTS: Cold exposure decreased the pathologic and disease activity index scores in a mouse model. Endomicroscopy revealed that cold exposure preserved colonic mucosal microcirculation, and 9.4 T MRI imaging revealed alleviation of intestinal wall thickness. In addition, the expression of the TLR4 and PP65 proteins was downregulated and epithelial cell junctions were strengthened after cold exposure. Intriguingly, we found that cold exposure reversed the decrease in ZO-1 and occludin protein levels in dextran sulfate sodium (DSS)- and trinitrobenzenesulfonic acid-induced colitis mouse models. Multi-omics analysis revealed the biological landscape of DSS-induced colitis under cold exposure and identified that the peroxisome proliferator-activated receptor (PPAR) signaling pathway mediates the effects of cold on colitis. Subsequent administration of rosiglitazone (PPAR agonist) enhanced the protective effect of cold exposure on colitis, whereas GW9662 (PPAR antagonist) administration mitigated these protective effects. Overall, cold exposure ameliorated the progression of mouse colitis through the PPARγ/NF-κB signaling axis and preserved the intestinal mucosal barrier. CONCLUSION: Our study provides a mechanistic link between intestinal inflammation and cold exposure, providing a theoretical framework for understanding the differences in the prevalence of IBD between the colder regions and non-cold regions, and offering new insights into IBD therapy.

17.
Sci Total Environ ; 947: 174657, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986700

ABSTRACT

Dissolved organic matter (DOM) and dissolved black carbon (DBC) are significant environmental factors that influence the transport of organic pollutants. However, the mechanisms by which their molecular diversity affects pollutant transport remain unclear. This study elucidates the molecular binding sequence and adsorption sites through which DOM/DBC compounds antagonize the transport of 2,4,6-trichlorophenol (TCP) using column experiments and modelling. DBC exhibits a high TCP adsorption rate (kn = 5.32 × 10-22 mol1-n∙Ln-1∙min-1) and conditional stability constant (logK = 5.19-5.74), indicating a strong binding affinity and antagonistic effect on TCP. This is attributed to the high relative content of lipid/protein compounds in DBC (25.65 % and 30.28 %, respectively). Moreover, the small molecule lipid compounds showed stronger TCP adsorption energy (Ead = -0.0071 eV/-0.0093 eV) in DOM/DBC, combined with two-dimensional correlation spectroscopy model found that DOM/DBC antagonized TCP transport in the environment through binding sequences that transformed from lipid/protein small molecule compounds to lignin/tannin compounds. This study used a multifaceted approach to comprehensively assess the impact of DOM/DBC on TCP transport. It reveals that the molecular diversity of DOM/DBC is a critical factor affecting pollutant transport, providing important insights into the environmental trend and ecological effects of pollutants.

18.
Mol Imaging Radionucl Ther ; 33(2): 115-117, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38949490

ABSTRACT

In a 55-year-old woman with sigmoid colon cancer, a subcutaneous mass in the left lower abdomen was incidentally found and gradually enlarged. For further diagnosis and staging, an 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scan was performed, which revealed a subcutaneous mass in the left lower abdomen with mild uptake of 18F-FDG, suggesting the possibility of metastasis. However, post-surgery and pathological confirmation, this mass was diagnosed as a drain-site hernia containing fallopian tube fimbria, which is extremely rare but should be considered in the differential diagnosis of subcutaneous mass in the lower abdomen.

19.
Endocr Connect ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949925

ABSTRACT

BACKGROUND: Epigenetics, which involves regulatory modifications that do not alter the DNA sequence itself, is crucial in the development and progression of thyroid cancer. This study aims to provide a comprehensive analysis of the epigenetic research landscape in thyroid cancer, highlighting current trends, major research areas, and potential future directions. METHODS: A bibliometric analysis was performed using data from the Web of Science Core Collection (WOSCC) up to November 1, 2023. Analytical tools such as VOSviewer, CiteSpace, and the R package "bibliometrix" were employed for comprehensive data analysis and visualization. This process identified principal research themes, along with influential authors, institutions, and countries contributing to the field. RESULTS: The analysis reveals a marked increase in thyroid cancer epigenetics research over the past two decades. Emergent key themes include the exploration of molecular mechanisms and biomarkers, various subtypes of thyroid cancer, implications for therapeutic interventions, advancements in technologies and methodologies, and the scope of translational research. Research hotspots within these themes highlight intensive areas of study and the potential for significant breakthroughs. CONCLUSION: This study presents an in-depth overview of the current state of epigenetics in thyroid cancer research. It underscores the potential of epigenetic strategies as viable therapeutic options and provides valuable insights for researchers and clinicians in advancing the understanding and treatment of this complex disease. Future research is vital to fully leverage the therapeutic possibilities offered by epigenetics in the management of thyroid cancer.

20.
J Colloid Interface Sci ; 674: 686-694, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38950467

ABSTRACT

The energy storage capacity of porous carbon materials is closely tied to their surface structure and chemical properties. However, developing an innovative and straightforward approach to synthesize yolk-shell carbon spheres (YCs) remains a great challenge till date. Herein, we prepared a series of porous nitrogen-doped yolk-shell carbon spheres (NYCs) via a "pyrolysis-capture" method. This method involves coating the resorcinol-formaldehyde (RF) resin sphere with a layer of compact silica shell induced by 2-methylimidazole (ME) catalysis to produce a confined nano-space. Based on the confined effect of compact silica shell, volatile gases emitted from the RF resin and ME during pyrolysis can not only diffuse into the pores of the RF resin but can also be captured to form an outer carbon shell. This results in the tunable structures of NYCs materials. As the pyrolysis temperature rises, the shell thickness of NYCs reduces, the pore size expands, the roughness increases, and the N/O content of surface elements is enhanced. Notably, as an electrode material used forsupercapacitors,the optimized NYCs-800 exhibits excellent performance with a capacitance of 301.2F g-1 at the current density of 1 A/g and outstanding cycling life stability of 96.1% after 10,000 cycles. These results signify that controlling the surface structure and chemical properties of NYCs materials is an effective approach for constructing advanced energy storage materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...