Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280387

ABSTRACT

BackgroundGuidelines for SARS-CoV-2 have relied on limited data on duration of viral infectiousness and correlation with COVID-19 symptoms and diagnostic testing. MethodsWe enrolled ambulatory adults with acute SARS-CoV-2 infection and performed serial measurements of COVID-19 symptoms, nasal swab viral RNA, nucleocapsid (N) and spike (S) antigens, and replication-competent SARS-CoV-2 by culture. We determined average time from symptom onset to a first negative test result and estimated risk of infectiousness, as defined by a positive viral culture. ResultsAmong 95 adults, median [interquartile range] time from symptom onset to first negative test result was 9 [5] days, 13 [6] days, 11 [4] days, and >19 days for S antigen, N antigen, viral culture growth, and viral RNA by RT-PCR, respectively. Beyond two weeks, viral cultures and N antigen titers were rarely positive, while viral RNA remained detectable among half (26/51) of participants tested 21-30 days after symptom onset. Between 6-10 days from symptom onset, N antigen was strongly associated with viral culture positivity (relative risk=7.61, 95% CI: 3.01-19.2), whereas neither viral RNA nor symptoms were associated with culture positivity. During the 14 days following symptom onset, presence of N antigen (adjusted relative risk=7.66, 95% CI: 3.96-14.82), remained strongly associated with viral culture positivity, regardless of COVID-19 symptoms. ConclusionsMost adults have replication-competent SARS-CoV-2 for 10-14 after symptom onset, and N antigen testing is a strong predictor of viral infectiousness. Within two weeks from symptom onset, N antigen testing, rather than absence of symptoms or viral RNA, should be used to safely discontinue isolation. FundingBill and Melinda Gates Foundation

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22278720

ABSTRACT

To evaluate SARS-CoV-2 variants we isolated SARS-CoV-2 temporally during the pandemic starting with first appearance of virus in the Western hemisphere near Seattle, WA, USA, and isolated each known major variant class, revealing the dynamics of emergence and complete take-over of all new cases by current Omicron variants. We assessed virus neutralization in a first-ever full comparison across variants and evaluated a novel monoclonal antibody (Mab). We found that convalescence greater than 5-months provides little-to-no protection against SARS-CoV-2 variants, vaccination enhances immunity against variants with the exception of Omicron BA.1, and paired testing of vaccine sera against ancestral virus compared to Omicron BA.1 shows that 3-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a 2-dose regimen. We also reveal a novel Mab that effectively neutralizes Omicron BA.1 and BA.2 variants over clinically-approved Mabs. Our observations underscore the need for continued vaccination efforts, with innovation for vaccine and Mab improvement, for protection against variants of SARS-CoV-2. SummaryWe isolated SARS-CoV-2 temporally starting with emergence of virus in the Western hemisphere. Neutralization analyses across all variant lineages show that vaccine-boost regimen provides protection against Omicron BA.1. We reveal a Mab that protects against Omicron BA.1 and BA.2 variants.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-495215

ABSTRACT

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has greatly reduced coronavirus disease 2019 (COVID-19)-related deaths and hospitalizations, but waning immunity and the emergence of variants capable of immune escape indicate the need for novel SARS-CoV-2 vaccines. An intranasal parainfluenza virus 5 (PIV5)-vectored COVID-19 vaccine CVXGA1 has been proven efficacious in animal models and blocks contact transmission of SARS-CoV-2 in ferrets. CVXGA1 vaccine is currently in human clinical trials in the United States. This work investigates the immunogenicity and efficacy of CVXGA1 and other PIV5-vectored vaccines expressing additional antigen SARS-CoV-2 nucleoprotein (N) or SARS-CoV-2 variant spike (S) proteins of beta, delta, gamma, and omicron variants against homologous and heterologous challenges in hamsters. A single intranasal dose of CVXGA1 induces neutralizing antibodies against SARS-CoV-2 WA1 (ancestral), delta variant, and omicron variant and protects against both homologous and heterologous virus challenges. Compared to mRNA COVID-19 vaccine, neutralizing antibody titers induced by CVXGA1 were well-maintained over time. When administered as a boost following two doses of a mRNA COVID-19 vaccine, PIV5-vectored vaccines expressing the S protein from WA1 (CVXGA1), delta, or omicron variants generate higher levels of cross-reactive neutralizing antibodies compared to three doses of a mRNA vaccine. In addition to the S protein, the N protein provides added protection as assessed by the highest body weight gain post-challenge infection. Our data indicates that PIV5-vectored COVID-19 vaccines, such as CVXGA1, can serve as booster vaccines against emerging variants. ImportanceWith emerging new variants of concern (VOC), SARS-CoV 2 continues to be a major threat to human health. Approved COVID-19 vaccines have been less effective against these emerging VOCs. This work demonstrates the protective efficacy, and strong boosting effect, of a new intranasal viral-vectored vaccine against SARS-CoV-2 variants in hamsters.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-478520

ABSTRACT

In late 2021, the SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VoC) was reported with many mutations in the viral spike protein that were predicted to enhance transmissibility and allow viral escape of neutralizing antibodies. Within weeks of the first report of B.1.1.529, this VoC has rapidly spread throughout the world, replacing previously circulating strains of SARS-CoV-2 and leading to a resurgence in COVID-19 cases even in populations with high levels of vaccine- and infection-induced immunity. Initial studies have shown that B.1.1.529 is less sensitive to protective antibody conferred by previous infections and vaccines developed against earlier lineages of SARS-CoV-2. The ability of B.1.1.529 to spread even among vaccinated populations has led to a global public health demand for updated vaccines that can confer protection against B.1.1.529. We report here the rapid development of a replicating RNA vaccine expressing the B.1.1.529 spike and show that this B.1.1.529-targeted vaccine is immunogenic in mice and hamsters. Interestingly, we found that mice previously immunized with A.1-specific vaccines failed to elevate neutralizing antibody titers against B.1.1.529 following B.1.1.529-targeted boosting, suggesting pre-existing immunity may impact the efficacy of B.1.1.529-targeted boosters. Furthermore, we found that our B.1.1.529-targeted vaccine provides superior protection compared to the ancestral A.1-targeted vaccine in hamsters challenged with the B.1.1.529 VoC after a single dose of each vaccine. One Sentence SummaryRapidly developed RNA vaccine protects against SARS-CoV-2 Omicron variant

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-823134

ABSTRACT

Objective To understand the epidemic characteristics of different virus types of hand, foot and mouth disease (HFMD) in Zhaotong City, and provide guidance and recommendations for the prevention and control of HFMD, and to analyze seasonal characteristics of different virus types of HFMD in Zhaotong City. Methods The epidemiological characteristics of different virus types of HFMD in Zhaotong City from 2014 to 2017 were analyzed using the concentration and circular distribution methods. Results The main pathogens detected were EV71, Cox A16 and other enteroviruses, which were 216, 182, and 294, respectively, accounting for 57.45%, 73.44%, and 67.11%. M was 0.86, indicating that EV71 had strong seasonality. The Rayleigh test showed statistically significant differences (Z = 99.53, P <0.001). ā = 157 °, the peak day of onset was May 10, similar to untyped (May 16), the peak period was April 21-June 1, and the epidemic period was April 1-June 21. Conclusion According to the incubation period of hand-foot-mouth disease and the period of time during which the vaccine develops protective effects, vaccination of hand-foot-mouth disease vaccine at the peak period has a good guiding significance for the timeliness and pertinence of vaccination.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-805154

ABSTRACT

Objective@#To identify the etiology and source of infection in a diarrhea outbreak in Yunnan in May 2017 and to provide the evidence for formulating prevention and control measures.@*Methods@#Epidemiological investigation was carried out on the epidemic situation of diarrhea in the village of Lvchun County in Yunnan Province, the field sampling, laboratory testing and data analysis were also performed.@*Results@#Among the 44 patients, 11 of the 13 samples were positive for rotavirus nucleic acid in group A, and the positive rate was 84.62%. The survey showed that the water supply pipe was damaged and polluted by human and livestock manure and domestic sewage. The trend of the damaged water pipe was basically the same as the case distribution, and the rainfall was significantly related to the number of the disease.@*Conclusions@#This event was an outbreak of diarrhea caused by group A rotavirus. The direct pollution of drinking water caused by rainfall may be the risk factor of this outbreak. The health management of rural drinking water should be strengthened and the health knowledge and education of preventing intestinal infectious diseases should be promoted.

SELECTION OF CITATIONS
SEARCH DETAIL
...