Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.526
Filter
2.
Am J Cancer Res ; 14(6): 3117-3129, 2024.
Article in English | MEDLINE | ID: mdl-39005672

ABSTRACT

Pyruvate Dehydrogenase Kinase 3 (PDK3) has emerged as a significant player in various cancer types, yet its specific impact on cancers including colon cancer remains ambiguous. Through pan-cancer analysis using TCGA data, we found that the expression of PDK3 and the composition of the immune microenvironment for different tumors were highly heterogeneous across tumors. PDK3 is highly expressed in colorectal cancer and may promote tumor proliferation by activating PI3K-AKT signaling. In addition, we found that PDK3 was able to inhibit tumor antigen presentation signals to suppress immune killing. High PDK3 expression predicts less CD8+ T cell infiltration and effector function. Moreover, inhibition of PDK3 expression bolstered CD8+ T cell-mediated cytotoxicity CD8+ T cell infiltration and activation in vivo. Notably, PDK3 was found to facilitate STAT1 activation and elevate programmed death-ligand 1 (PD-L1) expression in colon cancer cells. Importantly, PDK3 inhibition combination with PD-1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. In summary, these findings underscore PDK3's role in fueling colon cancer growth by orchestrating PI3K-AKT signaling and PD-L1 expression and dampening CD8+ T cell function.

3.
EMBO Mol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009885

ABSTRACT

Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.

4.
Article in English | MEDLINE | ID: mdl-38969832

ABSTRACT

Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.

5.
Biotechnol Bioeng ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978393

ABSTRACT

ß-Alanine is the only ß-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible ß-alanine producer with enhanced metabolic flux towards ß-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the ß-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L ß-alanine was achieved at 80 h. This is the highest titer of ß-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.

6.
Mater Horiz ; 11(14): 3287-3297, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38842407

ABSTRACT

Eukaryotic cells regulate various cellular processes through membrane-bound and membrane-less organelles, enabling active signal communication and material exchange. Lysosomes and lipid droplets are representative organelles, contributing to cell lipophagy when their interaction and metabolism are disrupted. Our limited understanding of the interacting behaviours and physicochemical properties of different organelles during lipophagy hinders accurate diagnosis and treatment of related diseases. In this contribution, we report a fluorescent probe, PTZ, engineered for dual-targeting of lipid droplets and lysosomes. PTZ can track liquid-liquid phase separation and respond to polarity shifts through ratiometric fluorescence emission, elucidating the lipophagy process from the perspective of organelle behavior and physicochemical properties. Leveraging on the multifunctionality of PTZ, we have successfully tracked the polarity and dynamic changes of lysosomes and lipid droplets during lipophagy. Furthermore, an unknown homogeneous transition of lipid droplets and lysosomes was discovered, which provided a new perspective for understanding lipophagy processes. And this work is expected to serve as a reference for diagnosis and treatment of lipophagy-related diseases.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Lysosomes , Humans , Lysosomes/metabolism , Lipid Droplets/metabolism , Phase Transition , Autophagy/physiology , HeLa Cells
7.
Nano Lett ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860507

ABSTRACT

The majority of dislocations in nitride epilayers are edge threading dislocations (TDs), which diminish the performance of nitride devices. However, it is extremely difficult to reduce the edge TDs due to the lack of available slip systems. Here, we systematically investigate the formation mechanism of edge TDs and find that besides originating at the coalescence boundaries, these dislocations are also closely related to geometrical misfit dislocations at the interface. Based on this understanding, we propose a novel strategy to reduce the edge TD density of the GaN epilayer by nearly 1 order of magnitude via graphene-assisted remote heteroepitaxy. The first-principles calculations confirm that the insertion of graphene dramatically reduces the energy barrier required for interfacial sliding, which promotes a new strain release channel. This work provides a unique approach to directly suppress the formation of edge TDs at the source, thereby facilitating the enhanced performance of photoelectronic and electronic devices.

8.
Anal Bioanal Chem ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853180

ABSTRACT

Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.

9.
Front Immunol ; 15: 1371829, 2024.
Article in English | MEDLINE | ID: mdl-38933262

ABSTRACT

Background: This study seeks to enhance the accuracy and efficiency of clinical diagnosis and therapeutic decision-making in hepatocellular carcinoma (HCC), as well as to optimize the assessment of immunotherapy response. Methods: A training set comprising 305 HCC cases was obtained from The Cancer Genome Atlas (TCGA) database. Initially, a screening process was undertaken to identify prognostically significant immune-related genes (IRGs), followed by the application of logistic regression and least absolute shrinkage and selection operator (LASSO) regression methods for gene modeling. Subsequently, the final model was constructed using support vector machines-recursive feature elimination (SVM-RFE). Following model evaluation, quantitative polymerase chain reaction (qPCR) was employed to examine the gene expression profiles in tissue samples obtained from our cohort of 54 patients with HCC and an independent cohort of 231 patients, and the prognostic relevance of the model was substantiated. Thereafter, the association of the model with the immune responses was examined, and its predictive value regarding the efficacy of immunotherapy was corroborated through studies involving three cohorts undergoing immunotherapy. Finally, the study uncovered the potential mechanism by which the model contributed to prognosticating HCC outcomes and assessing immunotherapy effectiveness. Results: SVM-RFE modeling was applied to develop an OS prognostic model based on six IRGs (CMTM7, HDAC1, HRAS, PSMD1, RAET1E, and TXLNA). The performance of the model was assessed by AUC values on the ROC curves, resulting in values of 0.83, 0.73, and 0.75 for the predictions at 1, 3, and 5 years, respectively. A marked difference in OS outcomes was noted when comparing the high-risk group (HRG) with the low-risk group (LRG), as demonstrated in both the initial training set (P <0.0001) and the subsequent validation cohort (P <0.0001). Additionally, the SVMRS in the HRG demonstrated a notable positive correlation with key immune checkpoint genes (CTLA-4, PD-1, and PD-L1). The results obtained from the examination of three cohorts undergoing immunotherapy affirmed the potential capability of this model in predicting immunotherapy effectiveness. Conclusions: The HCC predictive model developed in this study, comprising six genes, demonstrates a robust capability to predict the OS of patients with HCC and immunotherapy effectiveness in tumor management.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/diagnosis , Immunotherapy/methods , Prognosis , Biomarkers, Tumor/genetics , Male , Female , Transcriptome , Middle Aged , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Support Vector Machine , Treatment Outcome
10.
Adv Mater ; : e2405109, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845131

ABSTRACT

Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering.

11.
ACS Appl Mater Interfaces ; 16(26): 33192-33204, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885077

ABSTRACT

The human body's primary line of defense, the skin, is especially prone to harm. Although microRNA (miRNA)-based therapies have attracted increasing attention for skin wound healing, their applications remain limited owing to a range of issues. Tetrahedral framework DNA (tFNA), a nanomaterial possessing nucleic acid characteristics, exhibits an excellent biocompatibility, in addition to anti-inflammatory and transdermal delivery capabilities, and can accelerate skin wound healing. Due to its potential to exert synergistic action with therapeutic miRNA, tFNA has been considered an ideal vehicle for miRNA therapy. The design and synthesis of a bioswitchable miRNA delivery system (BiRDS) is reported, which contains three miRNAs as well as a nucleic acid core to maximize the loading capacity while preserving the characteristics of tFNA. A high stability, excellent permeability of cells as well as tissues and good biological compatibility are demonstrated. By selectively inhibiting heparin-binding epidermal growth factor (HB-EGF), the BiRDS can inhibit the NF-κB pathway while simultaneously controlling the PTEN/Akt pathway. As a result, the BiRDS helps wound healing go through the inflammation to the proliferative phase. This study demonstrates the advantages of the BiRDS in miRNA-based therapy and provides new research ideas for the treatment of skin-related diseases.


Subject(s)
DNA , MicroRNAs , Wound Healing , MicroRNAs/metabolism , MicroRNAs/genetics , Wound Healing/drug effects , Humans , Animals , DNA/chemistry , Mice , Nanostructures/chemistry , NF-kappa B/metabolism
12.
Respir Med ; 231: 107722, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936635

ABSTRACT

INTRODUCTION: Direct oral anticoagulants (DOACs) are increasingly prescribed for life-long anticoagulation in chronic thromboembolic pulmonary hypertension (CTEPH) patients, despite not being recommended in the guidelines. This study aims to evaluate the efficacy and safety of DOACs in CTEPH patients. METHODS: From May 2013 to December 2022, patients who were first diagnosed with CTEPH in Fuwai Hospital and started long-term anticoagulation treatment with warfarin or DOACs were retrospectively included and followed up until (1) death, (2) transition to other kinds of anticoagulants, or (3) discontinuation of anticoagulation. Propensity score matching was used to balance confounding bias of baseline characteristics. All-cause death, major bleeding, clinically relevant nonmajor bleeding and venous thromboembolism (VTE) recurrence were obtained and analysed. RESULTS: After propensity score matching, 115 patients taking warfarin and 206 patients taking DOACs were included in our study and followed up for 5.5 [3.4, 7.1] years. There was no significant difference of survival between the warfarin and the DOAC group (p = 0.77). The exposure adjusted event rate of major bleeding (0.3 %/person-year vs 0.4 %/person-year, p = 0.705) and clinically relevant nonmajor bleeding (3.1 %/person-year vs 3.2 %/person-year, p > 0.999) was similar between two groups. The exposure adjusted rate of VTE recurrence was significantly higher in the DOAC group (1.5 %/person-year vs 0.3 %/person-year, p = 0.030). CONCLUSION: In anticoagulation of CTEPH patients, DOACs have similar survival rate, similar risk of bleeding but higher risk of VTE recurrence than warfarin.

13.
iScience ; 27(6): 110073, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883834

ABSTRACT

Investigating the underlying factors that cause differential individual responses to chronic stress is crucial for developing personalized therapies, especially in the face of pandemics such as COVID-19. However, this question remains elusive, particularly in primates. In the present study, we aimed to address this question by utilizing monkeys as a model to examine the impacts of social rank on stress levels and physiological and behavioral responses to chronic stress primarily caused by social isolation at both the individual and group levels. Our results showed that high-ranking animals were more susceptible to chronic stress. After exposure to chronic stress, although social hierarchies remained the same, the colonies exhibited more harmonious group relationships (e.g., more prosocial behaviors), with notable contributions from low-ranking animals. Overall, this study deepens our understanding of how social status shapes responses to chronic stress and sheds light on developing tailored and personalized therapies for coping with chronic stress.

14.
Adv Radiat Oncol ; 9(7): 101503, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38883996

ABSTRACT

Purpose: Although active spot scanning irradiation technique is theoretically superior to passive-scattered broad beam irradiation with respect to normal tissue sparing, corroborations of the clinical benefit of carbon-ion spot scanning have remained scarce. This study aims to investigate the feasibility and clinical implementation of an active spot scanning beam calculation algorithm in a homemade carbon-ion treatment planning system by comparing it with a conventional passive uniform scanning technique. Methods and Materials: Carbon-ion plans were initially formulated using spot/uniform scanning methods in 22 participants enrolled in a prospective observational clinical trial. Subsequently, 2 additional plans were designed, resulting in 3 carbon-ion plans for each participant: uniform and spot scanning with miniridge filters of 2 mm and 4 mm, respectively. Results: The findings revealed no significant differences in dose homogeneity; however, significant differences in dose conformity were found between the active and passive scanning plans. For dose drop-off outside the target volume, the average gradient index values were 1.94 (95% CI, 1.79%-2.09%), 1.87 (95% CI, 1.73%-2.01%), and 3.20 (95% CI, 2.80%-3.61%) for the miniridge filters of 2 mm and 4 mm, and uniform scanning plans, respectively. The pretreatment tumor volume was 124.7 cm3 (range, 54.2-234 cm3), and the average shrinkage observed was 38.4% (95% CI, 17.6%-59.4%). Seven participants experienced grade 1 acute toxicity, and 4 experienced grade 2 acute toxicity. However, none of the patients developed grade 3 acute toxicity. Conclusions: Increasing evidence suggests that potential clinical advantages of spot scanning delivery underlie its technical characteristics. As one among the few institutions currently using carbon-ion radiation therapy, the investigation also provides promising safety and efficacy outcomes from the initial groups of treated participants, thereby contributing to the established clinical evidence supporting the effectiveness and superiority of carbon-ion therapy.

15.
Adv Sci (Weinh) ; : e2404172, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874481

ABSTRACT

Smart drug platforms based on spatiotemporally controlled release and integration of tumor imaging are expected to overcome the inefficiency and uncertainty of traditional theranostic modes. In this study, a composite consisting of a thermosensitive hydrogel (polyvinyl alcohol-carboxylic acid hydrogel (PCF)) and a multifunctional nanoparticle (Fe3O4@Au/Mn(Zn)-4-carboxyphenyl porphyrin/polydopamine (FAMxP)) is developed to combine tumor immunogenic cell death (ICD)/immune checkpoint blockade (ICB) therapy under the guidance of magnetic resonance imaging (MRI) and fluorescence imaging (FI). It can not only further recognize the target cells through the folate receptor of tumor cells, but also produce thermal dissolution after exposure to near-infrared light to slowly release FAMxP in situ, thereby prolonging the treatment time and avoiding tumor recurrence. As FAMxP entered the tumor cells, it released FAMx in a pH-dependent manner. Chemodynamic, photothermal and photodynamic therapy can cause significant ICD in cancer cells. ICB can thus be further enhanced by injecting anti-programmed cell death ligand 1, improving the effectiveness of tumor treatment. The developed PCF-FAMxP composite hydrogel may represent an updated drug design approach with simple compositions for cooperative MRI/FI-guided targeted therapeutic pathways for tumors.

16.
Anal Chem ; 96(24): 9808-9816, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833718

ABSTRACT

Visualization of the mitochondrial state is crucial for tracking cell life processes and diagnosing disease, while fluorescent probes that can accurately assess mitochondrial status are currently scarce. Herein, a fluorescent probe named "SYN" was designed and prepared, which can target mitochondria via the mitochondrial membrane potential. Upon pathology or external stimulation, SYN can be released from the mitochondria and accumulate in the nucleolus to monitor the status of mitochondria. During this process, the brightness of the nucleolus can then serve as an indicator of mitochondrial damage. SYN has demonstrated excellent photostability in live cells as well as an extremely inert fluorescence response to bioactive molecules and the physiological pH environment of live cells. Spectroscopic titration and molecular docking studies have revealed that SYN can be lit up in nucleoli due to the high viscosity of the nucleus and the strong electrostatic interaction with the phosphate backbone of RNA. This probe is expected to be an exceptional tool based on its excellent imaging properties for tracking mitochondrial state in live cells.


Subject(s)
Cell Nucleolus , Fluorescent Dyes , Mitochondria , Mitochondria/metabolism , Mitochondria/chemistry , Humans , Fluorescent Dyes/chemistry , Cell Nucleolus/metabolism , HeLa Cells , Molecular Docking Simulation , Optical Imaging , Membrane Potential, Mitochondrial
17.
Sci Adv ; 10(23): eadl2201, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848371

ABSTRACT

La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.

18.
Biochem Biophys Res Commun ; 720: 150073, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38754161

ABSTRACT

Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.


Subject(s)
Anxiety , Astrocytes , Periaqueductal Gray , Animals , Periaqueductal Gray/physiology , Astrocytes/metabolism , Anxiety/physiopathology , Mice , Male , Synaptic Transmission/physiology , Behavior, Animal/physiology , Mice, Inbred C57BL , Excitatory Postsynaptic Potentials/physiology , Stress, Psychological/physiopathology , Neurons/physiology
19.
FEBS Open Bio ; 14(7): 1101-1115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710658

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.


Subject(s)
Adenylyl Cyclases , Fibrosis , Heart Failure , Animals , Mice , Fibrosis/genetics , Heart Failure/metabolism , Heart Failure/genetics , Heart Failure/pathology , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Disease Models, Animal , Gene Expression Profiling , Mice, Inbred C57BL
20.
Biotechnol Lett ; 46(4): 699-711, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733437

ABSTRACT

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.


Subject(s)
Epichlorohydrin , Hydrolases , Epichlorohydrin/chemistry , Epichlorohydrin/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry , Kinetics , Stereoisomerism , Escherichia coli/genetics , Escherichia coli/enzymology , Protein Engineering/methods , alpha-Chlorohydrin/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...