Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.740
Filter
2.
Sci Total Environ ; 948: 174715, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002592

ABSTRACT

Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.

3.
J Nurs Res ; 32(4): e343, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39046360

ABSTRACT

BACKGROUND: Breast cancer is the second most common cancer in humans. Its therapy procedures such as breast biopsy can cause anxiety and persistent pain in patients. Virtual reality (VR) has been applied to promote comfort in various populations. However, the effectiveness of VR in relieving pain and anxiety in patients undergoing breast cancer treatment is unclear. PURPOSE: This study was designed to examine the effect of VR on anxiety and pain in people undergoing treatment for breast cancer. METHODS: PubMed, Cochrane, Embase, Scopus, Web of Science, and MEDLINE databases were searched for studies involving VR, pain, and anxiety in patients with breast cancer published up to March 2022. The Cochrane Handbook for Systems quality evaluation standard 6.3.0 was followed to assess risk of bias in the identified studies, with the results reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Subsequently, a meta-analysis of the included data was conducted using RevMan 5.3 software. RESULTS: Six randomized controlled trials and one quasi-experimental study were included. The strength of the evidence ranged from moderate to high. Although VR was found to ameliorate anxiety in patients with breast cancer, only three studies showed statistically significant changes. All of the included studies reported statistically significant improvement in pain levels. In addition, two of the studies reported cybersickness symptoms as a common side effect of VR. CONCLUSIONS: VR has an important role to play in alleviating pain in patients with breast cancer. However, evidence demonstrating VR's importance in alleviating anxiety symptoms in this population is insufficient. Studies conducted with larger sample sizes and high-quality research methodologies will be necessary to clarify this issue. Clinical nurses should address the potential side effects of VR.


Subject(s)
Anxiety , Breast Neoplasms , Pain Management , Virtual Reality , Humans , Breast Neoplasms/psychology , Breast Neoplasms/complications , Female , Anxiety/therapy , Anxiety/psychology , Anxiety/etiology , Pain Management/methods , Pain Management/standards
4.
Mol Neurobiol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046700

ABSTRACT

Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-ß-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.

5.
Fitoterapia ; : 106145, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059747

ABSTRACT

Five new compounds, including two sesquiterpenoid glycosides (1 and 2), two monoterpenoid glycosides (3 and 4), and a quinovose ester (5), together with four known compounds (6-9) were isolated from branches and leaves of Pittosporum pulchrum Gagnep. Their structures were established by 1D and 2D NMR, HR-ESI-MS, IR and UV spectral analyses. This is the first time to investigate the chemical constituents of P. pulchrum. Subsequently, the anti-inflammatory and antioxidant activities of different solvent fractions of ethanol extract and isolated compounds were evaluated. Dichloromethane and ethyl acetate fractions dramatically inhibited the production of NO in a concentration-dependent manner in LPS-induced RAW264.7 cells. Ethyl acetate and n-butanol fractions showed excellent DPPH radical scavenging activities with IC50 values of 24.31 µg/mL and 27.81 µg/mL, respectively. Compounds 7 and 8 might be potential natural antioxidants with IC50 values of 16.13 µM and 24.81 µM, respectively.

6.
Cell Commun Signal ; 22(1): 376, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39061070

ABSTRACT

Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.


Subject(s)
Ferroptosis , Mice, Inbred C57BL , Nanoparticles , Reperfusion Injury , Selenium , X-Box Binding Protein 1 , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Nanoparticles/chemistry , Ferroptosis/drug effects , Mice , Selenium/pharmacology , Selenium/administration & dosage , Male , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Ferritins/metabolism , Signal Transduction/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Autophagy/drug effects , Humans
7.
Int J Surg Pathol ; : 10668969241260236, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034146

ABSTRACT

Morphological features are critical in evaluation of renal tumors and directing molecular workup. The objective of this study was to review histomorphology of renal tumors with molecular alterations of known subtypes. Renal tumors in The Cancer Genome Atlas were reviewed to identify tumors with defining molecular alterations. Single representative digital slides and pathology reports were reviewed and morphologic features recorded. Sixty tumors were identified with molecular alterations in genes characteristic of defined renal cell carcinoma (RCC) subtypes. Findings included the presence of both low- and high-grade histology in TFE3 rearranged RCCs, TFEB amplified RCCs, succinate dehydrogenase (SDH) mutated RCCs and RCCs with mutations in mismatch repair genes. Three ELOC mutated RCCs were identified, one of which demonstrated infiltrative features. Pseudostratification of nuclei in fumarate hydratase mutated RCCs and nuclear grooves in SDH mutated RCCs were intriguing findings not previously reported. Mucinous features were noted in NF2, KRAS, and SDH mutated and ALK rearranged tumors. Significant morphologic overlap was noted across most categories with limited clues for subclassification. Whereas the number of diagnostic entities for kidney tumors continues to increase, many of these have overlapping features, highlighting the significant role molecular characterization currently plays and will continue to play in the future.

8.
Arthritis Rheumatol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037181

ABSTRACT

OBJECTIVE: To explore T-cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA). METHODS: Circulating T cells from RA patients and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through ChIP-qPCR. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were utilized for translational experiments. RESULTS: In RA patients, a notable predisposition of CD4+ T cells towards differentiation into Trm cells was observed, demonstrating a positive correlation with the Disease Activity Score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of RA patients as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras. CONCLUSION: Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.

9.
Quant Imaging Med Surg ; 14(7): 4675-4687, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022222

ABSTRACT

Background: People infected with human immunodeficiency virus (PIWH) have a higher risk of cardiovascular events. This study was designed to compare the differences in plaque characteristics and perivascular fat between subclinical coronary atherosclerosis in PIWH and healthy controls (HC) by coronary computed tomography angiography (CCTA). We also assessed the associations between human immunodeficiency virus (HIV) infection, antiretroviral therapy (ART), and coronary artery disease (CAD). Methods: This cross-sectional study included a total of 158 PIWH and 79 controls. CCTA was used to evaluate coronary artery plaque prevalence, coronary stenosis severity, plaque composition, plaque volume, and perivascular fat attenuation index (FAI). Logistic regression analyses were used to assess the associations between the prevalence of coronary artery plaque and HIV-related clinical indicators. Results: There was no difference in total coronary artery plaque prevalence between PIWH and controls (44.3% vs. 32.9%; P=0.09), but the prevalence of noncalcified plaque was significantly higher in PIWH compared with the controls (33.5% vs. 16.5%; P=0.006). After adjustment for age, sex, statin use, and family history of cardiovascular disease (CVD), the prevalence of noncalcified plaque remained 2 times higher in PIWH [odds ratio (OR), 2.082; 95% confidence interval (CI): 1.007-4.304; P=0.048]. The perivascular FAI measured around the left anterior descending artery (LAD) was higher in PIWH (-71.4±5.7 vs. -73.5±7.0; P=0.03) compared with that of the controls. The intra-group analyses of PIWH suggested that the decrease in nadir CD4+ T-cell count was associated with the increased prevalence of noncalcified plaque (OR, 4.139; 95% CI: 1.312-13.060; P=0.02). Conclusions: PIWH have a higher risk of developing noncalcified plaque and greater perivascular fat. In addition, the increased noncalcified plaque prevalence in PIWH may be associated with the immunodeficiency caused by HIV.

10.
EClinicalMedicine ; 73: 102685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022796

ABSTRACT

Background: Rosai-Dorfman disease (RDD) is a rare heterogeneous histiocytic disorder lacking standardized first-line treatment. Methods: This single-center, phase 2 prospective study enrolled 13 newly diagnosed and 10 recurrent RDD patients from June 2021 to March 2023 at Peking Union Medical College Hospital (Beijing, China). Lenalidomide 25 mg days 1-21 plus dexamethasone 40 mg days 1, 8, 15, 22 was administered in 28-day cycles, totaling 12 cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall response rate (ORR) to lenalidomide and dexamethasone (RD) regimen, toxicity, and overall survival (OS) measured from RD start to death or last follow-up. OS and PFS were estimated according to Kaplan-Meier survival analysis and compared with the log-rank test. For OS and OR rate, 95% confidence limits were obtained using the Clopper-Pearson method, with standard methods used for PFS. p < 0.05 was considered statistically significant. The trial was registered with ClinicalTrials.gov (NCT04924647). Findings: The median age was 44 years (IQR 35-54). All patients had extranodal RDD. MAPK pathway alterations occurred in 6/18 (33%). Elevated IL-6 and TNF-α were found in 39% (n = 9) and 70% (n = 16), respectively. All patients received ≥6 cycles (median 12, range 6-12, IQR 10-12). The ORR was 87% (20/23, 95% CI 66%-97%), 30% (n = 7) complete remission, 57% (n = 13) partial remission). Treatment with RD significantly decreased median serum levels of both IL-6 (from 5.9 (IQR 4.2-8.7) to 2.9 (IQR 2.1-5.9) pg/mL, p = 0.031) and TNF-α (from 12.2 (IQR 8.6-17.9) to 8.3 (IQR 6.1-10.5) pg/mL, p = 0.0012). With a median 26 months follow-up (range 6-28, IQR 16-28), 4 patients relapsed and none died. Two-year OS and PFS were 100.0% (95% CI 85%-100%) and 69.0% (95% CI 51%-94%), respectively. No grade 3-4 adverse events or discontinuations due to adverse events occurred. Twelve patients (n = 12, 52%) had grade 1-2 hematological toxicity. Other toxicities included constipation (n = 2, 9%), glucose intolerance (n = 2, 9%), edema (n = 2, 9%), insomnia (n = 1, 4%), and tremor (n = 1, 4%). Interpretation: Lenalidomide and dexamethasone regimen is an effective and safe regimen for newly diagnosed and recurrent RDD. Funding: National Natural Science Foundation of China, Beijing Natural Science Haidian frontier Foundation Funding, and the National High Level Hospital Clinical Research Funding.

11.
J Med Chem ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031090

ABSTRACT

Targeting the programmed cell death-1/ligand 1 (PD-1/PD-L1) pathway is one of the most promising cancer treatment strategies. Studies have shown that HDAC inhibitors can enhance the antitumor immune response by modulating the expression of PD-L1. Herein, we designed and synthesized a series of novel hydrazide-based small molecule HDAC inhibitors; among them, compound HQ-30 showed selective HDAC3 inhibition (IC50 = 89 nM) and remarkable PD-L1-degrading activity (DC50 = 5.7 µM, Dmax = 80% at 10 µM). Further studies revealed that HQ-30 induced the degradation of PD-L1 by regulating cathepsin B (CTSB) in the lysosomes. Further, HQ-30 could enhance the infiltration of CD3+ CD4+ helper T and CD3+ CD8+ cytotoxic T cells in tumors, thus activating the tumor immune microenvironment. Moreover, HQ-30 possessed a benign toxicity profile (LD50 > 1000 mg/kg) and favorable pharmacokinetic properties (F = 57%). Taken together, HQ-30 is worthy of further investigation as a small molecule-based epigenetic modulator of tumor immunotherapy.

12.
Helicobacter ; 29(4): e13114, 2024.
Article in English | MEDLINE | ID: mdl-39031966

ABSTRACT

BACKGROUND: Patient adherence status to the newly introduced family-based Helicobacter pylori (H. pylori) infection control and management strategy remains unclear, so are its influencing factors. We aim to investigate family members' adherence and its influencing factors during the family-based H. pylori infection management practice for related disease prevention. MATERIALS AND METHODS: Based on our previously family-based H. pylori survey in 2021, 282 families including 772 individuals were followed up 2 years after the initial survey to compare if the investigation and education might improve family member's adherence. The participant's adherence to H. pylori infection awareness, retest, treatment, publicity, gastroscopy, and hygiene habits were followed up, and their influencing factors were also analyzed. RESULTS: The overall participant's adherence to recommendations on H. pylori awareness, retest, treatment, publicity, gastroscopy, and hygiene habits were 77% (187/243), 67.3% (138/205), 60.1% (211/351), 46.5% (107/230), 45.6% (159/349), and 39.1% (213/545), respectively; and all showed improvements compared with their prior survey stages. The top reasons for rejection to treatment, retest, and gastroscopy were forgetting or unaware of H. pylori infection (30.3%), busy (32.8%), and asymptomatic (67.9%), respectively. Independent risk factor for low adherence to treatment was occupation (e.g., staff: OR 4.49, 95% CI 1.34-15.10). Independent favorable factors for treatment adherence were individuals at the ages of 18-44 years (OR 0.19, 95% CI 0.04-0.89) and had a large family size (e.g., four family members: OR 0.15, 95% CI 0.06-0.41); for retest adherence, it was individuals at the ages of 60-69 years (OR 0.23, 95% CI 0.06-0.97); for gastroscopy adherence, it was individuals at the age of 60-69 years (OR 0.46, 95% CI 0.28-0.75), and with gastrointestinal symptoms (OR 0.57, 95% CI 0.36-0.90). CONCLUSIONS: Family-based H. pylori management increases individual adherence to treatment, retest, and awareness, and there are also improved adherence to gastroscopy, publicity, and personal hygiene recommendations; further efforts are required to enhance the individual adherence rate for related disease prevention.


Subject(s)
Family , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , China/epidemiology , Male , Female , Adult , Middle Aged , Adolescent , Young Adult , Patient Compliance/statistics & numerical data , Aged , Surveys and Questionnaires , Infection Control/methods , Child
13.
Curr Protoc ; 4(7): e1038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967962

ABSTRACT

A variety of metals, e.g., lead (Pb), cadmium (Cd), and lithium (Li), are in the environment and are toxic to humans. Hematopoietic stem cells (HSCs) reside at the apex of hematopoiesis and are capable of generating all kinds of blood cells and self-renew to maintain the HSC pool. HSCs are sensitive to environmental stimuli. Metals may influence the function of HSCs by directly acting on HSCs or indirectly by affecting the surrounding microenvironment for HSCs in the bone marrow (BM) or niche, including cellular and extracellular components. Investigating the impact of direct and/or indirect actions of metals on HSCs contributes to the understanding of immunological and hematopoietic toxicology of metals. Treatment of HSCs with metals ex vivo, and the ensuing HSC transplantation assays, are useful for evaluating the impacts of the direct actions of metals on the function of HSCs. Investigating the mechanisms involved, given the rarity of HSCs, methods that require large numbers of cells are not suitable for signal screening; however, flow cytometry is a useful tool for signal screening HSCs. After targeting signaling pathways, interventions ex vivo and HSCs transplantation are required to confirm the roles of the signaling pathways in regulating the function of HSCs exposed to metals. Here, we describe protocols to evaluate the mechanisms of direct and indirect action of metals on HSCs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Identify the impact of a metal on the competence of HSCs Basic Protocol 2: Identify the impact of a metal on the lineage bias of HSC differentiation Basic Protocol 3: Screen the potential signaling molecules in HSCs during metal exposure Alternate Protocol 1: Ex vivo treatment with a metal on purified HSCs Alternate Protocol 2: Ex vivo intervention of the signaling pathway regulating the function of HSCs during metal exposure.


Subject(s)
Hematopoietic Stem Cells , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Animals , Metals/toxicity , Mice , Humans , Hematopoietic Stem Cell Transplantation , Flow Cytometry/methods
14.
J Hum Genet ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982179

ABSTRACT

Endometriosis is a common gynecological disorder affecting around 10% of reproductive-age women. Although many hypotheses were proposed, genetic alteration has been considered as one of the key factors promoting pathogenesis. Due to racial/ethnic disparities in the process of hormone regulation and nutrition metabolism, a genome-wide association study (GWAS) with 2794 cases and 27,940 controls was conducted in a Taiwanese-Han population. Our study identified five significant susceptibility loci for endometriosis, and three of them, WNT4 (on the 1p36.12), RMND1 (6q25.1), and CCDC170 (6q25.1), have been previously associated with endometriosis across different populations, including European and Japanese descent cohorts. Other two including C5orf66/C5orf66-AS2 (5q31.1) and STN1 (10q24.33) are newly identified ones. Functional network analysis of potent risk genes revealed the involvement of cancer susceptibility and neurodevelopmental disorders in endometriosis development. In addition, long non-coding RNAs (lncRNAs) C5orf66 and C5orf66-AS2 can interact with many RNA-binding proteins (RBPs) which can influence RNA metabolic process, mRNA stabilization, and mRNA splicing, leading to dysregulation in tumor-promoting gene expression. Those findings support clinical observations of differences in the presentation of endometriosis in Taiwanese-Han population with higher risks of developing deeply infiltrating/invasive lesions and the associated malignancies.

15.
IEEE Trans Cybern ; PP2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963743

ABSTRACT

Cascading failures pose a significant security threat to networked systems, with recent global incidents underscoring their destructive potential. The security threat of cascading failures has always existed, but the evolution of cyber-physical systems (CPSs) has introduced novel dimensions to cascading failures, intensifying their threats owing to the intricate fusion of cyber and physical domains. Addressing these threats requires a nuanced understanding achieved through failure modeling and vulnerability analysis. By analyzing the historical failures in different CPSs, the cascading failure in CPSs is comprehensively defined as a complicated propagation process in coupled cyber and physical systems, initialized by natural accidents or human interference, which exhibits a progressive evolution within the networked structure and ultimately results in unexpected large-scale systemic failures. Subsequently, this study advances the development of instructions for modeling cascading failures and conducting vulnerability analyses within CPSs. The examination also delves into the core challenges inherent in these methodologies. Moreover, a comprehensive survey and classification of extant research methodologies and solutions are undertaken, accompanied by a concise evaluation of their advancements and limitations. To validate the performance of these methodologies, numerical experiments are conducted to ascertain their distinct features. In conclusion, this article advocates for future research initiatives, particularly emphasizing the exploration of uncertainty analysis, defense strategies, and verification platforms. By addressing these areas, the resilience of CPSs against cascading failures can be significantly enhanced.

16.
J Hazard Mater ; 476: 135081, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964036

ABSTRACT

Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.

17.
J Hazard Mater ; 476: 135117, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972206

ABSTRACT

Benzoyl peroxide (BPO), as a widely used organic peroxide, has attracted widespread attention from all sectors of society for its environmental hazards and potential risks to human health. Herein, we employed a Förster resonance energy transfer (FRET) strategy to construct a novel ratiometric fluorescent probe CY-DCI for BPO detection in food, zebrafish, and mice. Specifically, a hemicyanine fluorophore and a dicyanoisophorone fluorophore were connected with a piperazine group as donor and acceptor, respectively, and an olefinic unsaturated bond as the reaction site. CY-DCI has favorable selectivity and an excellent detection limit as low as 58.1 nM, and the recovery rates for real-sample detection ranged from 95.8 % to 104 %, with relative standard deviations (RSD) less than 2.58 %. To further improve its practicality, silica gel plates and test strips containing CY-DCI (0-50 µM) were developed for naked-eye detection of BPO with satisfactory results. Additionally, this novel probe was then applied for ratiometric imaging of living zebrafish and mice and showed high ratiometric imaging resolution in the green and red channels, thus demonstrating its practical application for BPO detection and toxicity early warning in food and biosystems.

18.
Front Public Health ; 12: 1342313, 2024.
Article in English | MEDLINE | ID: mdl-38962766

ABSTRACT

Background: Studies have shown that gut dysbiosis contributes to the pathophysiology of type 2 diabetes mellitus (T2DM). Identifying specific gut microbiota dysbiosis may provide insight into the pathogenesis of T2DM. Purpose: This study investigated the causal relationship between gut microbiota and T2DM using meta-analysis and Mendelian randomization (MR). Methods: In the first part, we searched for literature on gut microbiota and T2DM, and conducted a meta-analysis. We observed differences in glycosylated hemoglobin and fasting blood glucose levels in both groups. Second, we obtained GWAS data from genome-wide association study database 19 (GWAS). We used two-sample MR analysis to verify the forward and reverse causal associations between gut microbiota and T2DM. Additionally, we selected the European GWAS data from the European Bioinformatics Institute (EBI) as a validation set for external validation of the MR analysis. In the third part, we aimed to clarify which gut microbiota contribute to the degree of causal association between group disorders and T2DM through multivariate MR analysis and Bayesian model averaging (MR-BMA). Results: 1. According to the meta-analysis results, the glycated hemoglobin concentration in the gut probiotic intervention group was significantly lower than in the control group. Following treatment, fasting blood glucose levels in the intervention group were significantly lower than those in the control group. 2. The results of two samples MR analysis revealed that there were causal relationships between six gut microbiota and T2DM. Genus Haemophilus and order Pasteurellaceae were negatively correlated with T2DM. Genus Actinomycetes, class Melanobacteria and genus Lactobacillus were positively correlated. Reverse MR analysis demonstrated that T2DM and gut microbiota did not have any reverse causal relationship. The external validation data set showed a causal relationship between gut microbiota and T2DM. 3. Multivariate MR analysis and MR-BMA results showed that the independent genus Haemophilus collection had the largest PP. Conclusion: Our research results suggest that gut microbiota is closely related to T2DM pathogenesis. The results of further MR research and an analysis of the prediction model indicate that a variety of gut microbiota disorders, including genus Haemophilus, are causally related to the development of T2DM. The findings of this study may provide some insight into the diagnosis and treatment of T2DM. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Diabetes Mellitus, Type 2/microbiology , Humans , Dysbiosis , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Probiotics
19.
Int J Biol Macromol ; 275(Pt 1): 133643, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964680

ABSTRACT

In this study, the effects of different ultrasonic treatment intensities (57, 170, and 283 W/cm2) on the chemical composition, molecular chain characteristics, crystal structure, micromorphology, interfacial adsorption behavior and emulsifying properties of sugar beet pectin (SBP) were investigated. Ultrasonic treatment did not change the types of SBP monosaccharides, but it had impacts on their various monosaccharide contents. Moreover, the feruloylated, acetyl, and methoxy groups of SBP also undergo varying degrees of changes. The increase in ultrasonic treatment intensity led to transition in the molecular chain conformation of SBP from rigid semi-flexible chains to flexible chains, accompanied by modification in its crystal structure. Microstructural analysis of SBP confirmed the significant change in molecular chain conformation. Modified SBP could form an elastic interfacial film with higher deformation resistance on the oil-water interface. The SBP sample modified with 170 W/cm2 exhibited better emulsifying properties owing to its better interfacial adsorption behavior. Moreover, the emulsions prepared with modified SBP exhibited better stability capability under different environmental stresses (pH value, salt ion concentration, heating temperature and freeze-thaw treatment). The results revealed that the ultrasonic technology is useful to improve the emulsifying properties of SBP.

20.
Front Oncol ; 14: 1383419, 2024.
Article in English | MEDLINE | ID: mdl-38978740

ABSTRACT

The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.

SELECTION OF CITATIONS
SEARCH DETAIL
...