Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.735
Filter
1.
Inorg Chem ; 63(28): 13031-13038, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38957956

ABSTRACT

The separation of high-octane dibranched alkanes from naphtha is critical in the refining of gasoline. To date, research on the membrane-based separation of alkane isomers has been limited, with a particular paucity of investigations into mixed-matrix membranes. Herein, the continuous and dense UiO-66/PIM-1 mixed-matrix membrane, which was prepared through precise control of the interfacial structure, was first applied to the differentiation of C6 alkane isomers. Due to the synergistic combination of UiO-66 with differential adsorption capabilities for alkanes and PIM-1 that possesses a cross-linkable structure, the resulting UiO-66/PIM-1-(20) membrane demonstrated remarkable separation performance and high stability. Pervaporation measurements showed that the mass fraction of 2,2-dimethylbutane in the feed side was increased from 50.0 to 75.8 wt % while an excellent flux of 1700 g m-2 h-1 was maintained over a continuous 40 h period. The UiO-66/PIM-1-(20) membrane, characterized by its facile replication and processing, shows potential for large-scale fabrication. This study offers a new approach to the membrane separation of alkane isomers.

2.
Cell Stem Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981471

ABSTRACT

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Herein, we develop a human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on the PSM tissues cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and the PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the biochemical and biomechanical events that guide somite formation.

3.
Chemistry ; : e202402200, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004611

ABSTRACT

Severe shuttle effect of soluble polysulfides and sluggish redox kinetics have been thought of as the critical issues hindering the extensive applications of lithium-sulfur batteries (LSBs). Herein, one-dimensional boron nitride (1D BN) fibers with abundant pores and sufficient N-vacancy defects were synthesized using a thermal crystallization following a pre-condensation step. The 1D structure of BN facilitates unblocked ions diffusion pathways during charge/discharge cycles. The embedded pores within the polar BN strengthen the immobilization of polysulfides via both physical confinement and chemical interaction. Moreover, the highly exposed active surface area and intentionally created N-vacancy sites substantially promote reaction kinetics by lowering the energy barriers of the rate-limiting steps. After incorporating with conductive carbon networks and elemental S, the as-prepared S/Nv-BN@CBC cathode of LSBs deliver an initial discharge capacity of up to 1347 mAh g-1 at 200 mA g-1, while maintaining a low decay rate of 0.03% per cycle over 1000 cycles at 1600 mA g-1. This work offers an effective strategy to mitigate the shuttle effect and highlights the significant potential of defect-engineered BN in accelerating the reaction kinetics of LSBs.

4.
Anal Biochem ; : 115618, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009105

ABSTRACT

OBJECTIVE: The objective of this research is to develop two methodologies, Enzymatic recombinase amplification (ERA) and Polymerase Chain Reaction (PCR) coupled with Lateral Flow Dipstick (LFD), for the swift authentication of Gastrodia elata. METHODOLOGY: Primers and nfo probes for the ERA of Gastrodia elata were developed based on the ITS2 genome sequences of Gastrodia elata and its counterfeits. Specific primers for the PCR analysis of Gastrodia elata were generated using the NCBI (National Center for Biotechnology Information) online platform. Through experimental validation, the optimal reaction system and conditions for both methodologies were established, and their efficacy was assessed. RESULTS: The methodologies developed herein are applicable for the targeted analysis of the medicinal species, Gastrodia elata. The sensitivity of the ERA-LFD detection method matched that of the conventional PCR-LFD approach, recorded at 1 ng·µL-1. Consistency was observed in the results across three replicates of visualization test strips for both techniques. Upon evaluation, both the PCR-LFD and ERA-LFD methods demonstrated a total compliance rate of 100%. CONCLUSION: The ERA-LFD and PCR-LFD methods facilitate reduced detection times and offer visual results. These techniques are particularly effective for on-site detection and quality control in the authentication of Gastrodia elata within traditional Chinese medicine markets and at the primary level of healthcare provision.

5.
Endosc Ultrasound ; 13(2): 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38947752

ABSTRACT

Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.

6.
Ann Hematol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990296

ABSTRACT

Membranous nephropathy (MN) is a rare complication that can occur after allogeneic hematopoietic stem cell transplantation (allo-HSCT). MN patients may develop nephrotic syndrome or even kidney failure, which greatly affects their quality of life and prognosis. However, current knowledge regarding MN after allo-HSCT is limited. Thus, a multicenter nested case‒control study was conducted. Patients who had been diagnosed with MN after allo-HSCT were retrospectively identified at 8 HSCT centers. A total of 51 patients with MN after allo-HSCT were included. The median age of MN patients after allo-HSCT was 38 years, and the median duration from HSCT to MN was 18 months. The use of HLA-matched donors (P = 0.0102) and peripheral blood as the graft source (P = 0.0060) were identified as independent predisposing risk factors for the onset of MN after allo-HSCT. Compared to those in the control group, the incidence of extensive chronic graft-versus-host disease was greater in the MN patients (P = 0.0002). A total of 31 patients developed nephrotic syndrome. Patients receiving combination treatments of corticosteroids and immunosuppressants appeared to have better outcomes. In conclusion, MN is a rare but occasionally severe complication following HSCT and may require active treatment.

7.
Article in English | MEDLINE | ID: mdl-39007490

ABSTRACT

INTRODUCTION: Early neoplastic progression of Barrett's esophagus (BE) is often treated with endoscopic therapy. While effective, some patients are refractory to therapy or recur after apparent eradication of the BE. The goal of this study was to determine whether genomic alterations within the treated BE may be associated with persistent or recurrent disease. METHODS: We performed DNA sequencing on pre-treatment esophageal samples from 45 patients who were successfully treated by endoscopic therapy and did not recur as well as pre- and post-treatment samples from 40 patients who had persistent neoplasia and 21 patients who had recurrent neoplasia. The genomic alterations were compared between groups. RESULTS: The genomic landscape was similar between all groups. Patients with persistent disease were more likely to have pre-treatment alterations involving the receptor tyrosine kinase pathway (p=0.01), amplifications of oncogenes (p=0.01), and deletions of tumor suppressor genes (p=0.02). These associations were no longer significant after adjusting for patient age and BE length. Over half of patients with persistent (52.5%) or recurrent (57.2%) disease showed pre- and post-treatment samples that shared at least 50% of their driver mutations. CONCLUSION: Pre-treatment samples were genomically similar between those who responded to endoscopic therapy and those who had persistent or recurrent disease, suggesting there is not a strong genomic component to treatment response. While it was expected to find shared driver mutations in pre- and post-treatment samples in patients with persistent disease, the finding that an equal number of patients with recurrent disease also showed this relation suggests that many recurrences represent undetected minimal residual disease.

8.
Int J Biol Sci ; 20(9): 3317-3333, 2024.
Article in English | MEDLINE | ID: mdl-38993555

ABSTRACT

The glomerular podocyte, a terminally differentiated cell, is crucial for the integrity of the glomerular filtration barrier. The re-entry of podocytes into the mitotic phase results in injuries or death, known as mitotic catastrophe (MC), which significantly contributes to the progression of diabetic nephropathy (DN). Furthermore, P62-mediated autophagic flux has been shown to regulate DN-induced podocyte injury. Although previous studies, including ours, have demonstrated that ursolic acid (UA) mitigates podocyte injury by enhancing autophagy under high glucose conditions, the protective functions and potential regulatory mechanisms of UA against DN have not been fully elucidated. For aiming to investigate the regulatory mechanism of podocyte injuries in DN progression, and the protective function of UA treatment against DN progression, we utilized db/db mice and high glucose (HG)-induced podocyte models in vivo and in vitro, with or without UA administration. Our findings indicate that UA treatment reduced DN progression by improving biochemical indices. P62 accumulation led to Murine Double Minute gene 2 (MDM2)-regulated MC in podocytes during DN, which was ameliorated by UA through enhanced P62-mediated autophagy. Additionally, the overexpression of NF-κB p65 or TNF-α abolished the protective effects of UA both in vivo and in vitro. Overall, our results provide strong evidence that UA could be a potential therapeutic agent for DN, regulated by inhibiting podocyte MC through the NF-κB/MDM2/Notch1 pathway by targeting autophagic-P62 accumulation.


Subject(s)
Autophagy , Diabetic Nephropathies , Podocytes , Triterpenes , Ursolic Acid , Podocytes/drug effects , Podocytes/metabolism , Animals , Triterpenes/pharmacology , Triterpenes/therapeutic use , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Mice , Autophagy/drug effects , Mitosis/drug effects , Male , Mice, Inbred C57BL
9.
J Pharm Anal ; 14(6): 100943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005842

ABSTRACT

Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.

10.
Zookeys ; 1206: 81-98, 2024.
Article in English | MEDLINE | ID: mdl-39006402

ABSTRACT

Anagyrus, a genus of Encyrtidae (Hymenoptera, Chalcidoidea), represents a successful group of parasitoid insects that attack various mealybug pests of agricultural and forestry plants. Until now, only 20 complete mitochondrial genomes have been sequenced, including those in this study. To enrich the diversity of mitochondrial genomes in Encyrtidae and to gain insights into their phylogenetic relationships, the mitochondrial genomes of two species of Anagyrus were sequenced, and the mitochondrial genomes of these species were compared and analyzed. Encyrtid mitochondrial genomes exhibit similarities in nucleotide composition, gene organization, and control region patterns. Comparative analysis of protein-coding genes revealed varying molecular evolutionary rates among different genes, with six genes (ATP8, ND2, ND4L, ND6, ND4 and ND5) showing higher rates than others. A phylogenetic analysis based on mitochondrial genome sequences supports the monophyly of Encyrtidae; however, the two subfamilies, Encyrtinae and Tetracneminae, are non-monophyletic. This study provides valuable insights into the phylogenetic relationships within the Encyrtidae and underscores the utility of mitochondrial genomes in the systematics of this family.

11.
Ren Fail ; 46(2): 2376331, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39011577

ABSTRACT

OBJECT: This study aims to conduct a systematic review and network meta-analysis to comprehensively evaluate the efficacy of various dressings in preventing exit-site infection (ESI) and peritonitis. METHODS: We searched PubMed, Embase, Web of Science, CINAHL Plus with Full Text (EBSCO), Sino Med, Wan Fang Data, China National Knowledge Infrastructure (CNKI) from 1 January 1999 to 10 July 2023. The language restrictions were Chinese and English. Randomized controlled trials, non-randomized controlled trials, and self-controlled trials were included in this study. We used ROB 2 tool to evaluate the quality of the included literature. Two authors independently extracted the data according to the Cochrane Handbook. A Frequentist network meta-analysis was performed using Stata17.0 according to PRISAMA with a random effects model. RESULTS: From 2092 potentially eligible studies, thirteen studies were selected for analysis, including nine randomized controlled studies, three quasi-experimental studies and one self-controlled trial. A total of 1229 patients were included to compare five types of exit site care dressings, named disinfection dressings, antibacterial dressings, non-antibacterial occlusive dressings, sterile gauze, and no-particular dressings. The outcome of prevention ESI is antibacterial dressings (SUCRA = 97.6) >non-antibacterial occlusive dressings (SUCRA = 68.3) >disinfection dressings (SUCRA = 50.6) >no-particular dressings (SUCRA = 23.9) >sterile gauze (SUCRA = 9.5). The antibacterial dressings were more effective than sterile gauze (OR = 0.13, 95%CI 0.04∼0.44), and no-particular dressing (OR = 0.18, 95%CI 0.07∼0.50) in preventing ESI; the non-antibacterial occlusive dressings were effective than sterile gauze (OR:0.30, 95%CI 0.16∼0.57). There is no statistical significance between no-particular dressings and other types of dressings in preventing the mature ESI. There is no statistical significance in the effectiveness of five types of dressings in preventing peritonitis. CONCLUSIONS: The no-particular dressings maybe more cost-effective for preventing mature ESI. None of the dressings was more effective than another in preventing peritonitis. Then, none of the different types of dressing is strongly recommended for preventing ESI or peritonitis.RegistrationCRD42022366756.


Subject(s)
Bandages , Network Meta-Analysis , Peritoneal Dialysis , Peritonitis , Humans , Peritonitis/prevention & control , Peritonitis/etiology , Peritonitis/microbiology , Peritoneal Dialysis/adverse effects , Catheter-Related Infections/prevention & control , Catheters, Indwelling/adverse effects , Catheters, Indwelling/microbiology
12.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998344

ABSTRACT

Synergistic strengthening of nano-scaled M2C and ß-NiAl has become a new route to develop ultra-high secondary-hardening steel. At present, the effect of Co on the synergistic precipitation behavior of duplex phases of M2C and ß-NiAl has been rarely reported. This paper revealed the effects of Co on the mechanical properties and duplex precipitates of M2C and ß-NiAl in a novel 2.5 GPa ultra-high strength secondary-hardening steel. The tensile tests indicated that a 10% Co-alloy steel achieved a much stronger secondary-hardening effects compared to a Co-free steel during aging process, especially in the early-aging state. Needle-shaped M2C and spherical ß-NiAl particles were observed in both Co-alloy and Co-free steels. However, the number density, and volume fraction of M2C were significantly enhanced in the 10% Co-alloy steel. The Mo contents in M2C carbide and α-Fe after aging treatment were both analyzed through experimental determination and thermodynamic calculation, and the results indicated that Co decreased the solubility of Mo in α-Fe, thus promoting the precipitation of Mo-rich carbides.

13.
Environ Sci Technol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954631

ABSTRACT

Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.

14.
J Exp Clin Cancer Res ; 43(1): 188, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965605

ABSTRACT

BACKGROUND: The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS: RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS: As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION: FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.


Subject(s)
Cell Proliferation , Cellular Senescence , RNA, Long Noncoding , Reactive Oxygen Species , Stomach Neoplasms , Y-Box-Binding Protein 1 , Humans , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Reactive Oxygen Species/metabolism , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Guanine Nucleotide Exchange Factors
15.
Phytomedicine ; 132: 155841, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38971025

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) represents a prevailing and severe clinical concern, characterized by limited availability of clinically effective treatment strategies. Current evidence endorses matrine's potential as a neuroprotective and analgesic agent for CIPN. Nevertheless, the precise targets and mechanisms of action of matrine remain insufficiently explored, impeding comprehensive pharmacological investigation and clinical application. OBJECTIVE: This study endeavors to elucidate the analgesic and neuroprotective effects of matrine in mice with vincristine-induced neuropathic pain. A focal point is the identification of matrine's specific target and the underlying molecular mechanisms governing its analgesic and neuroprotective actions. METHODS: To discern matrine's analgesic effects in CIPN mice, we conducted behavioral experiments encompassing the Von Frey filament test and Hargreaves Test. Furthermore, we conducted electrophysiological and histopathological assessments involving HE staining, Nissl staining, and Fluoro-Jade B staining to evaluate matrine's effects on neuroprotection within dorsal root ganglia and the spinal cord of CIPN mice. Sequentially, thermal shift assay, GTP hydrolysis assay, and nucleotide exchange assay were executed to validate matrine's inhibitory effects on KRAS. Molecular docking and site-directed mutagenesis experiments were implemented to identify the precise binding pocket of matrine on KRAS. Lastly, matrine's inhibitory effects on downstream signaling pathways of KRAS were confirmed through experiments conducted at animal model. RESULTS: Matrine exhibited a notable increase in mechanical withdrawal threshold and thermal withdrawal latency in vincristine-treated mice. This compound substantially ameliorated the neurofunctional blockade associated with sensory and motor functions induced by vincristine. Moreover, matrine mitigated pathological damage within DRG and the L4-L5 spinal cord regions. The study's MST experiments indicated matrine's substantial elevation of KRAS's melting temperature. The GTP hydrolysis and nucleotide exchange assays revealed concentration-dependent inhibition of KRAS activity by matrine. Molecular docking provided insight into the binding mode of matrine with KRAS, while site-directed mutagenesis verified the specific binding site of matrine on KRAS. Lastly, matrine's inhibition of downstream Raf/Erk1/2 and PI3K/Akt/mTOR signaling pathways of KRAS was confirmed in VCR mice. CONCLUSION: Compared to previous studies, our research has identified matrine as a natural inhibitor of the elusive protein KRAS, often considered "undruggable." Furthermore, this study has revealed that matrine exerts its therapeutic effects on chemotherapy-induced peripheral neuropathy (CIPN) by inhibiting KRAS activation, subsequently suppressing downstream signaling pathways such as Raf/Erk1/2 and PI3K/Akt/mTOR. This investigation signifies the discovery of a novel target for matrine, thus expanding the potential scope of its involvement in KRAS-related biological functions and diseases. These findings hold the promise of providing a crucial experimental foundation for forthcoming drug development initiatives centered around matrine, thereby advancing the field of pharmaceutical research.

16.
Clin Oral Investig ; 28(8): 427, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992326

ABSTRACT

OBJECTIVES: The aim of this study was to explore inflammation of soft tissue around the upper third molar as a prevalent cause of limited mouth opening, identify the clinical and radiographic features, and summarize the therapeutic effectiveness of tooth extraction. MATERIALS AND METHODS: A retrospective analysis of data from 264 patients with limited mouth opening over the last five years was performed. RESULTS: Among the 264 patients, 24 (9.1%) had inflammation of the soft tissue around the upper third molar, which was the second most common cause of limited mouth opening. Twenty-one of the twenty-four affected patients, with an average mouth opening of 19.1 ± 7.6 mm, underwent upper third molar extraction. Gingival tenderness around the upper third molar or maxillary tuberosity mucosa was a characteristic clinical manifestation (p < 0.05). The characteristic features on maxillofacial CT included soft tissue swelling around the upper third molar and gap narrowing between the maxillary nodules and the mandibular ascending branch. Post extraction, the average mouth opening increased to 31.4 ± 4.9 mm (p < 0.05), and follow-up CT demonstrated regression of the inflammatory soft tissue around the upper third molar. CONCLUSIONS: Inflammation of soft tissue around the upper third molar is a common cause of limited mouth opening. Symptoms of pain associated with the upper third molar and distinctive findings on enhanced maxillofacial CT scans are crucial for diagnosis. Upper third molar extraction yields favorable therapeutic outcomes. CLINICAL RELEVANCE: Inflammation of the soft tissue around the maxillary third molar commonly causes limited mouth opening, but this phenomenon has long been overlooked. Clarifying this etiology can reduce the number of misdiagnosed patients with restricted mouth opening and enable more efficient treatment for patients.


Subject(s)
Molar, Third , Tooth Extraction , Humans , Molar, Third/surgery , Molar, Third/diagnostic imaging , Female , Male , Retrospective Studies , Adult , Middle Aged , Tomography, X-Ray Computed , Inflammation , Adolescent
17.
Sci Total Environ ; : 174633, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992348

ABSTRACT

Accurate measurements are critical for timely early warning and effective prevention of epidemics due to the continuing impact of bioaerosols on human health. In recent years, researchers have been focused on developing and calibrating online monitoring instruments. However, there is still a lack of laboratory-generated standard aerosol samples suitable for calibration. Therefore, in this study, we utilized a self-developed Ink Jet Aerosol Generator (H-IJAG) to achieve controllable generation of monodisperse aerosol standard particles. The Aerosol Particle Size Spectrometer (APSS, TOPAS 323) was employed as the particle detector. The diameter of the droplet was calculated by measuring the projected area of the droplet in the same image using Image-J software. Experimental results demonstrated that under standardized inkjet parameters, H-IJAG exhibited good reliability and reproducibility, and generated solid particles within (0.4-15) µm. To better simulate the laser-induced fluorescence emission properties of ambient bioaerosol, tryptophan (Trp) and 7-hydroxycoumarin-4-acetic acid (7-HCA) were selected as solutes of the laboratory-generated aerosol samples, which are known bio-fluorescent materials. According to the law of propagation of uncertainty, the relative uncertainty of the volume equivalent diameter of Trp and 7-HCA solid particles by H-IJAG were 0.42 %, while the relative uncertainty of the particle number concentrations of Trp and 7-HCA solid particles generated by H-IJAG were 1.4 %. This optimized IJAG technique provides a promising solution for the accurate calibration of bioaerosol monitors.

18.
Transl Lung Cancer Res ; 13(6): 1414-1419, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973961

ABSTRACT

Background: Lung cancer is the malignant tumor with high incidence and mortality in China, and more than 30% of non-small cell lung cancer (NSCLC) patients are in the locally advanced stage at the first-time diagnosis. Currently, neoadjuvant epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) combined with radical surgery is effective in the treatment of unresectable stage III EGFR-mutated NSCLC (NSCLCm), and related studies are gradually increasing. But the feasibility of neoadjuvant EGFR-TKI combined with radical surgery for unresectable stage III EGFR-mutant lung squamous cell carcinoma (LUSQm) remains controversial. Case Description: This report presented a successful case of neoadjuvant target-therapy with aumolertinib, the third-generation EGFR-TKI, combined with radical surgery for a stage IIIA LUSQm female patient. After four cycles (28 days/cycle) of neoadjuvant target-therapy, the tumor had a partial response on imaging evaluation and pathological evaluation after surgery showed complete tumor response. The neoadjuvant target-therapy was well tolerated. All adverse events (AEs) that occurred during the treatment were grade I, including decreased platelets, impaired liver function, and diarrhea. The patient was instructed to continue taking Aumolertinib for 3 years after surgery. At the cut-off date of April 1, 2024, the patient had no recurrence after 20 months of treatment. Conclusions: The result of patient treatment demonstrated the potential feasibility of neoadjuvant Aumolertinib monotherapy for locally advanced LUSQm. The report provides some support for neoadjuvant target-therapy for LUSQm.

19.
Pak J Med Sci ; 40(6): 1087-1092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952500

ABSTRACT

Objective: To investigate the effects of motivational interview education on psychological status, compliance behavior and quality of life in patients with malignant tumors combined with diabetes mellitus. Methods: This is a retrospective study. Eighty patients with malignant tumors combined with diabetes mellitus admitted at The Fourth Hospital of Hebei Medical University from January 2021 to June 2022 were included as subjects and divided into observation group and control group according to the intervention measures. Patients in the control group were given routine health education intervention, while those in the observation group were given motivational interviewing intervention on the basis of the control group. We compared the prognosis, cognitive function, quality of life, relief of cancer pain before intervention and three months after the intervention of the two groups were compared. Results: At three months after the intervention, the total remission rate of cancer pain in the observation group was higher than that in the control group(p<0.05), while the levels of FBG and 2hPG in the observation group were significantly lower than those in the control group(p<0.05). Self-Rating Anxiety Scale(SAS) and Self-rating depression scale(SDS) scores decreased in both groups three months after the intervention, with the level of reduction in the observation group being higher than that in the control group(p<0.05). The overall compliance was higher in the observation group than in the control group(p<0.05). Conclusion: Motivational interviewing leads to alleviate negative emotions, improve the psychological status, enhance compliance behavior and improve quality of life in patients with malignant tumors combined with diabetes mellitus.

20.
Mol Ecol ; : e17457, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984778

ABSTRACT

Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...