Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.738
Filter
1.
Front Public Health ; 12: 1340929, 2024.
Article in English | MEDLINE | ID: mdl-38835611

ABSTRACT

Objective: The escalating prevalence of chronic pain poses a substantial socio-economic burden. Chronic pain primarily stems from musculoskeletal and nervous system impairments. Given cadmium's known toxicity to these systems, our study sought to investigate the correlation between blood cadmium levels and chronic pain. Methods: The cross-sectional study was conducted from the National Health and Nutrition Examination Survey (NHANES, 1999-2004), and comprised US adults who participated in a chronic pain interview. We employed logistic regression models and smooth curve fitting to elucidate the relationship between blood cadmium levels and chronic pain. Results: Our findings revealed a linear association between blood cadmium levels and chronic pain. Compared to the lower blood cadmium tertile 1 (<0.3 ug/dL), the adjusted odds ratios (ORs) for tertile 2 (0.3-0.4 ug/dL), and tertile 3 (≥0.5 ug/dL), were 1.11 (0.96-1.29) and 1.2 (1.03-1.39), respectively. Sensitivity analyses corroborated these results. Conclusion: Elevated levels of blood cadmium are associated with a heightened risk of chronic pain among adults in the United States. Mitigating cadmium exposure could potentially decrease the risk of chronic pain, thereby enhancing strategies for chronic pain prevention and management.


Subject(s)
Cadmium , Chronic Pain , Nutrition Surveys , Humans , Cadmium/blood , Female , Male , Cross-Sectional Studies , Chronic Pain/blood , Chronic Pain/drug therapy , Middle Aged , Risk Factors , Adult , United States/epidemiology , Aged , Prevalence
2.
Biol Psychiatry ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857821

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD), identified as the most common type of dementia, presents considerable heterogeneity in clinical manifestations. Early intervention at the stage of mild cognitive impairment (MCI) holds potential in AD prevention. However, characterizing the heterogeneity of neurobiological abnormalities and identifying MCI subtypes pose significant challenges. METHODS: We constructed sex-specific normative age models of dynamic brain functional networks and mapped the deviations of the brain characteristics for individuals from multiple datasets, including 295 AD patients, 441 MCI patients, and 1160 normal controls (NC). Then, based on these individual deviation patterns, subtypes for both AD and MCI were identified using the clustering method and comprehensively assessed their similarity and differences. RESULTS: Individuals with AD and MCI were clustered into 2 subtypes, and these subtypes exhibited significant differences in both their intrinsic brain functional phenotypes and spatial atrophy patterns, as well as in disease progression and cognitive decline trajectories. The subtypes with positive deviations in AD and MCI shared similar deviation patterns, as well as those with negative deviations. There was a potential transformation of MCI with negative deviation patterns into AD, and these MCI have a more severe cognitive decline rate. CONCLUSIONS: This study quantifies neurophysiological heterogeneity by analyzing deviation patterns from the dynamic functional connectome normative model and identifies disease subtypes in AD and MCI using a comprehensive resting-state fMRI multicenter dataset. It provides new insights for developing early prevention and personalized treatment strategies for AD.

3.
Opt Express ; 32(10): 17165-17172, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858906

ABSTRACT

We propose what we believe to be a new single-beam three-axis spin exchange relaxation free (SERF) vector atomic magnetometer scheme based on coordinate system deflection. A theoretical model for the system response under arbitrary angle deflection was established for the first time, and the system response at different angles was simulated and analyzed. The simulation results show that the system response increases in the direction of the non-sensitive axis and decreases in the direction of the sensitive axis as the deflection angle increases, and the two responses tend to be the same when the angle is deflected to 45-degrees. Experimental measurements were carried out at a deflection angle of 45-degrees and the results showed that the sensitivity of the magnetometer was 55fT/Hz1/2 in the x1-axis, 38fT/Hz1/2 in the y1-axis and 60fT/Hz1/2 in the z1-axis. This single-beam magnetometer can be used to construct a miniaturized and low-cost weak magnetic sensor, which is expected to be used for vector measurement of biomagnetism.

4.
Opt Express ; 32(11): 19146-19162, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859056

ABSTRACT

Fringe projection profilometry plays an important role for quality control in production line. However, it is facing challenges in the measurement of objects with intricate structures and high dynamic range that involved in precision manufacturing and semiconductor packaging. In this paper, a multi-view fringe projection profilometry system, which deploys a vertical telecentric projector and four oblique tilt-shift cameras, is presented to address the "blind spots" caused by shadowing, occlusion and local specular reflection. A flexible and accurate system calibration method is proposed, in which the corrected pinhole imaging model is used to calibrate the telecentric projection, and the unified calibration is performed by bundle adjustment. Experimental results show that the 3D repeated measurement error and standard deviation are no more than 10 µm within a measurable volume of 70 × 40 × 20 mm3. Furthermore, a group of experiments prove that the developed system can achieve complete and accurate 3D measurement for high dynamic range surfaces with complex structures.

5.
Opt Express ; 32(9): 15573-15585, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859205

ABSTRACT

An approach to achieve controllable non-uniformly distributed spiking cluster generation is proposed and demonstrated based on an externally-triggered broadband optoelectronic oscillator (OEO). The theory of controlling the distribution of the spiking pulses in a spiking cluster is established. Based on the theory, the dynamic and the distribution characteristics are analyzed and revealed in the stable spiking oscillation state under different externally-injected trigger signal voltages. The peak-voltage envelop of the cluster and the interval of the spiking pulses are demonstrated to have an approximate negative linearity relationship with the externally-injected trigger signal voltage in both the numerical simulation and the experiment, where a square waveform, a trapezoidal waveform, a parabola waveform, and a half-sinusoidal waveform are used as the externally-injected trigger signals. The results indicate that the spiking pulse distribution in the generated spiking cluster can be well controlled through tuning the externally-injected trigger signal voltage. The proposed scheme can be utilized in spiking encoding and reservoir computing.

6.
Opt Express ; 32(8): 13825-13835, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859342

ABSTRACT

An approach to generating stable phase-locked dual-frequency microwave signals is proposed and demonstrated based on a dual-passband optoelectronic oscillator (OEO). Mode gain competition is broken by employing frequency mixing mutual injection effect to realize phase locking between the two oscillation signals, which is achieved by applying a single-tone signal to a microwave mixer in the OEO cavity. In addition, a dual-loop configuration with balanced detection is utilized to ensure a high side mode suppression ratio (SMSR) and ultra-low phase noise, which also enhances the stability of the generated signal. In the experiment, a phase-locked dual-frequency microwave signal at 9.9982 GHz and 10.1155 GHz is generated by using the proposed OEO scheme. The SMSR and the phase noise are 75 dB and -141 dBc/Hz@10 kHz, respectively. Additionally, the Allan deviation of the generated signal is in the order of 10-11@1 s. These parameters are superior to those based on the same OEO but with a single-loop configuration, which are also compared in detail.

7.
Elife ; 132024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860651

ABSTRACT

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

8.
Burns Trauma ; 12: tkae009, 2024.
Article in English | MEDLINE | ID: mdl-38841099

ABSTRACT

Background: Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods: PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results: Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions: In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.

9.
PeerJ ; 12: e17480, 2024.
Article in English | MEDLINE | ID: mdl-38827288

ABSTRACT

Background: Barbronia, a genus of freshwater macrophagous leeches, belongs to Erpobdelliformes (Salifidae: Clitellata: Annelida), and B. weberi, a well-known leech within this genus, has a worldwide distribution. However, the systematics of Barbronia have not yet been adequately investigated, primarily due to a few molecular markers, and only 20 Barbronia sequences available in the GenBank database. This gap significantly limits our understanding of the Barbronia species identification, as well as the phylogenetic placement of the genus Barbronia within Salifidae. Methods: Next-generation sequencing (NGS) was used to simultaneously capture the entire mitochondrial genome and the full-length 18S/28S rDNA sequences. The species boundary of Barbronia species was estimated using bGMYC and bPTP methods, based on all available Barbronia COI sequences. Uncorrected COI p-distance was calculated in MEGA. A molecular data matrix consisting of four loci (COI, 12S, 18S, and 28S rDNA) for outgroups (three Haemopis leeches) and 49 erpobdellid leeches, representing eight genera within the Suborder Erpobdelliformes was aligned using MAFFT and LocARNA. This matrix was used to reconstruct the phylogenetic relationship of Barbronia via Bayesian inference (BI) and the maximum likelihood (ML) method. Results: The full lengths of the mitochondrial genome, 18S and 28S rDNAs of B. cf. gwalagwalensis, are 14847 bp, 1876 bp 1876 bp, and 2863 bp, respectively. Both bGMYC and bPTP results based on COI data are generally congruent, suggesting that the previously proposed taxa (B. arcana, B. weberi formosana, and B. wuttkei or Erpobdella wuttkei) are synonyms of B. weberi. The specimens listed in the B. gwalagwalensis group, however, are split into at least two Primary Species Hypotheses (PSHs). The p-distance of the first PSH is less than 1.3% but increased to 4.5% when including the secondary PSH (i.e., B. cf. gwalagwalensis). In comparison, the interspecific p-distance between the B. weberi group and the B. gwalagwalensis group ranged from 6.4% to 8.7%, and the intraspecific p-distance within the B. weberi group is less than 0.8%. Considering the species delimitation results and the sufficient large p-distance, the specimen sampled in China is treated as B. cf. gwalagwalensis. The monophyly of the four Erpobdelliformes families Salifidae, Orobdellidae, Gastrostomobdellidae sensu stricto and Erpobdellidae is well supported in ML and BI analysis based on a data of four markers. Within the Salifidae, a well-supported Barbronia is closely related to a clade containing Odontobdella and Mimobdella, and these three genera are sister to a clade consisted of Salifa and Linta. According to the results of this study, the strategy of simultaneous obtaining both whole mitochondria and nuclear markers from extensively sampled Salifids species using NGS is expected to fathom both the species diversity of B. gwalagwalensis and the evolutionary relationship of Salifidae.


Subject(s)
Phylogeny , Animals , Genome, Mitochondrial/genetics , Leeches/genetics , Leeches/classification , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 28S/genetics
10.
Oncol Res ; 32(6): 1109-1118, 2024.
Article in English | MEDLINE | ID: mdl-38827326

ABSTRACT

Background: Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods: We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results: Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion: In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.


Subject(s)
Antigens, CD19 , Cyclophosphamide , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Vidarabine , Xenograft Model Antitumor Assays , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Cyclophosphamide/therapeutic use , Cyclophosphamide/pharmacology , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Combined Modality Therapy
11.
Toxicol In Vitro ; 99: 105863, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823552

ABSTRACT

Selumetinib is an oral, effective, and selective tyrosine kinase inhibitor targeting mitogen-activated protein kinase 1 and 2 (MEK1/2), which is clinically active in multiple tumor types, such as neurofibromatosis type 1 (NF1), melanoma, gliomas and non-small cell lung cancer (NSCLC). The purpose of this article was to assess the effects of selumetinib on the activities of twelve human UDP-glucosyltransferases (UGTs) including UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, and its potential for inducing clinical drug-drug interactions (DDIs). The results demonstrated that selumetinib potently inhibited the activity of UGT2B7 through the mechanism of mixed inhibition with the inhibition constant value of 5.79 ± 0.65 µM. Furthermore, the plasma concentration of UGT2B7 substrate as the co-administered drug was predicted to be increased by at least 84 % when patients took selumetinib 75 mg twice daily, suggesting a high potential to induce clinical DDIs. Selumetinib exhibited weak inhibitory effects on other human UGTs and was unlikely to trigger off UGTs-mediated DDIs except for UGT2B7. Therefore, the combination of selumetinib with the substrate drug of UGT2B7 requires additional attention to avoid adverse events in clinical treatment.

12.
Nano Lett ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833670

ABSTRACT

Bismuth-based chalcogenides have emerged as promising candidates for next-generation, solution-processable semiconductors, mainly benefiting from their facile fabrication, low cost, excellent stability, and tunable optoelectronic properties. Particularly, the recently developed AgBiS2 solar cells have shown striking power conversion efficiencies. High performance bismuth-based photodetectors have also been extensively studied in the past few years. However, the fundamental properties of these Bi-based semiconductors have not been sufficiently investigated, which is crucial for further improving the device performance. Here, we introduce multiple time-resolved and steady-state techniques to fully characterize the charge carrier dynamics and charge transport of solution-processed Bi-based nanocrystals. It was found that the Ag-Bi ratio plays a critical role in charge transport. For Ag-deficient samples, silver bismuth sulfide thin films behave as localized state induced hopping charge transport, and the Ag-excess samples present band-like charge transport. This finding is crucial for developing more efficient Bi-based semiconductors and optoelectronic devices.

13.
Psychiatry Res Neuroimaging ; 342: 111825, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38833945

ABSTRACT

BACKGROUND: Disordered eating behaviors are prevalent among youngsters and highly associated with dysfunction in neurocognitive systems. We aimed to identify the potential changes in individuals with bulimia symptoms (sub-BN) to generate insights to understand developmental pathophysiology of bulimia nervosa. METHODS: We investigated group differences in terms of degree centrality (DC) and gray matter volume (GMV) among 145 undergraduates with bulimia symptoms and 140 matched control undergraduates, with the secondary analysis of the whole brain connectivity in these regions of interest showing differences in static functional connectivity (FC). RESULTS: The sub-BN group exhibited abnormalities of the right dorsolateral prefrontal cortex and right orbitofrontal cortex in both GMV and DC, and displayed decreased FC between these regions and the precuneus. We also observed that sub-BN presented with reduced FC between the calcarine and superior temporal gyrus, middle temporal gyrus and inferior parietal gyrus. Additionally, brain-behavioral associations suggest a distinct relationship between these FCs and psychopathological symptoms in sub-BN group. CONCLUSIONS: Our study demonstrated that individuals with bulimia symptoms present with aberrant neural patterns that mainly involved in cognitive control and reward processing, as well as attentional and self-referential processing, which could provide important insights into the pathology of BN.

14.
Neurosci Bull ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824231

ABSTRACT

The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.

15.
Brain Behav ; 14(6): e3591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849984

ABSTRACT

PURPOSE: Vestibular migraine (VM) is a disorder with prominent vestibular symptoms that are causally correlated with migraine and is the most prevalent neurological cause of episodic vertigo. Nevertheless, the functional underpinnings of VM remain largely unclear. This study aimed to reveal concordant alteration patterns of functional connectivity (FC) in VM patients. METHODS: We searched literature measuring resting-state FC abnormalities of VM patients in PubMed, Embase, Cochrane, and Scopus databases before May 2023. Furthermore, we applied the anisotropic effect size-signed differential mapping (AES-SDM) to conduct a whole-brain voxel-wise meta-analysis to identify the convergence of FC alterations in VM patients. RESULTS: Nine studies containing 251 VM patients and 257 healthy controls (HCs) were included. Relative to HCs, VM patients showed reduced activity in the left superior temporal gyrus and left midcingulate/paracingulate gyri, and increased activity in the precuneus, right superior parietal gyrus, and right middle frontal gyrus. Jackknife's analysis and subgroup analysis further supported the generalization and robustness of the main results. Furthermore, meta-regression analyses indicated that the Dizziness Handicap Inventory (DHI) ratings were positively correlated with the activity in the precuneus, while higher Headache Impact Test-6 and DHI scores were associated with lower activity within the left midcingulate/paracingulate gyri. CONCLUSIONS: The study indicates that VM is associated with specific functional deficits of VM patients in crucial regions involved in the vestibular and pain networks and provides further information on the pathophysiological mechanisms of VM.


Subject(s)
Migraine Disorders , Humans , Migraine Disorders/physiopathology , Migraine Disorders/diagnostic imaging , Magnetic Resonance Imaging , Vestibular Diseases/physiopathology , Functional Status , Connectome/methods , Vertigo/physiopathology , Brain/physiopathology , Brain/diagnostic imaging
16.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 586-589, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845700

ABSTRACT

This study introduces bis-[hexa-kis-(nitrato-κ2 O,O')lanthanum(III)] tris-[hexa-aqua-nickel(II)] hexa-hydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexa-gonal space group R . The salt com-prises [La(NO3)6]3- icosa-hedra and [Ni(H2O)6]2+ octa-hedra, thus forming an intricate network of inter-penetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octa-hedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexa-gonal plate-like crystals.

17.
Heliyon ; 10(11): e31703, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845950

ABSTRACT

This review comprehensively surveys the latest advancements in surface modification of pure magnesium (Mg) in recent years, with a focus on various cost-effective procedures, comparative analyses, and assessments of outcomes, addressing the merits and drawbacks of pure Mg and its alloys. Diverse economically feasible methods for surface modification, such as hydrothermal processes and ultrasonic micro-arc oxidation (UMAO), are discussed, emphasizing their exceptional performance in enhancing surface properties. The attention is directed towards the biocompatibility and corrosion resistance of pure Mg, underscoring the remarkable efficacy of techniques such as Ca-deficientca-deficient hydroxyapatite (CDHA)/MgF2 bi-layer coating and UMAO coating in electrochemical processes. These methods open up novel avenues for the application of pure Mg in medical implants. Emphasis is placed on the significance of adhering to the principles of reinforcing the foundation and addressing the source. The advocacy is for a judicious approach to corrosion protection on high-purity Mg surfaces, aiming to optimize the overall mechanical performance. Lastly, a call is made for future in-depth investigations into areas such as composite coatings and the biodegradation mechanisms of pure Mg surfaces, aiming to propel the field towards more sustainable and innovative developments.

18.
Oncol Lett ; 28(1): 337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38846431

ABSTRACT

The present study aimed to investigate the anti-leukemic effects of dihydroartemisinin (DHA) on T-cell acute lymphoblastic leukemia (T-ALL) cell lines, Jurkat and Molt-4, and the underlying mechanisms. Cell Counting Kit-8 was performed to measure cell viability. Cell apoptosis and cell cycle distribution were assessed by flow cytometry. The expression levels of ATF4 and CHOP mRNA were assessed by reverse transcription-quantitative PCR, while the protein abundance of SLC7A11, GPX4, ATF4 and CHOP was determined by western blotting. Moreover, malondialdehyde, glutathione (GSH) and reactive oxygen species (ROS) assays were used to detect the levels of ferroptosis. The results showed that DHA suppressed T-ALL cell viability in vitro, and induced cell cycle arrest at S or G2/M phase. DHA also induced ROS burst, activated endoplasmic reticulum (ER) stress, disrupted the system Xc--GSH-GSH peroxidase 4 antioxidant system, and increased lipid peroxide accumulation, resulting in cell death. By contrast, the pharmacological inhibition of ferroptosis alleviated DHA-induced cell death, confirming that DHA induces T-ALL cell death via ferroptosis. Mechanistically, the effect of DHA on ferroptosis was partly mediated by downregulating SLC7A11 and upregulating the ATF4-CHOP signaling pathway, which is associated with ER stress. These results indicated that DHA may induce ferroptosis in T-ALL cell lines and could represent a promising therapeutic agent for treating T-ALL.

19.
Biotechnol Adv ; : 108393, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825215

ABSTRACT

Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...