Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.665
Filter
1.
Clin Chim Acta ; 564: 119930, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39154701

ABSTRACT

Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.4 % of total hemoglobin) and undetectable NADH cytochrome b5 reductase (CYB5R3) activity. Whole-exome sequencing (WES) revealed two heterozygous mutations in CYB5R3: a previously reported pathogenic missense mutation c.611G>A(p.Cys204Tyr) inherited from the father, and a novel stop codon mutation c.906A>G(p.*302Trpext*42) from the mother, the latter mutation assessed as likely pathogenic according to ACMG guidelines. In cells overexpressing the CYB5R3 c.906A>G mutant construct, the CYB5R3 mRNA level was significantly lower than in cells overexpressing the wild-type (WT) CYB5R3 construct. However, there was no significant difference in protein expression levels between the mutant and WT constructs. Notably, an additional protein band of approximately 55 kDa was detected in the mutant cells. Immunofluorescence localization showed that, compared to wild-type CYB5R3, the subcellular localization of the CYB5R3 p.*302Trpext*42 mutant protein did not show significant changes and remained distributed in the endoplasmic reticulum and mitochondria. However, the c.906A>G(p.*302Trpext*42) mutation resulted in increased intracellular reactive oxygen species (ROS) levels and decreased NAD+/NADH ratio, suggesting impaired CYB5R3 function and implicating this novel mutation as likely pathogenic.


Subject(s)
Cytochrome-B(5) Reductase , Methemoglobinemia , Mutation , Humans , Male , Codon, Terminator/genetics , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/deficiency , Methemoglobinemia/genetics , Methemoglobinemia/congenital , Adult
2.
Light Sci Appl ; 13(1): 262, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39300089

ABSTRACT

Conventional dielectric solid materials, both natural and artificial, lack electromagnetic self-duality and thus require additional coatings to achieve impedance matching with free space. Here, we present a class of dielectric metamaterials that are effectively self-dual and vacuum-like, thereby exhibiting full-polarization omnidirectional impedance matching as an unusual Brewster effect extended across all incident angles and polarizations. With both birefringence and reflection eliminated regardless of wavefront and polarization, such anisotropic metamaterials could establish the electromagnetic equivalence with "stretched free space" in transformation optics, as substantiated through full-wave simulations and microwave experiments. Our findings open a practical pathway for realizing unprecedented polarization-independence and omnidirectional impedance-matching characteristics in pure dielectric solids.

3.
BMC Cardiovasc Disord ; 24(1): 502, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300362

ABSTRACT

BACKGROUND: The post-processing technology of CTA offers significant advantages in evaluating left atrial enlargement (LAE) in patients with persistent atrial fibrillation (PAF). This study aims to identify parameters for rapidly and accurately diagnosing LAE in patients with PAF using CT cross-sections. METHODS: Left atrial pulmonary venous (PV) CT was performed to 300 PAF patients with dual-source CT, and left atrial volume (LAV), left atrial anteroposterior diameter (LAD1), left atrial transverse diameter (LAD2), and left atrial area (LAA) were measured in the ventricular end systolic (ES) and middle diastolic (MD). LA index (LAI) = LA parameter/body surface area (BSA). Left atrial volume index (LAVIES) > 77.7 ml/m2 was used as the reference standard for the LAE diagnosis. RESULTS: 227 patients were enrolled in the group, 101 (44.5%) of whom had LAE. LAVES and LAVMD (r = 0.983), LAVIES and LAVIMD (r = 0.984), LAAES and LAVIES (r = 0.817), LAAMD and LAVIES (r = 0.814) had strong positive correlations. The area under curve (AUC) showed that all measured parameters were suitable for diagnosing LAE, and the diagnostic efficacy was compared as follows: LAA/LAAI> LAD> the relative value index of LAD, LAD2> LAD1. LAA and LAAI demonstrated comparable diagnostic efficacy, with LAA being more readily available than LAAI. CONCLUSIONS: The axial LAA measured by CTA can be served as a parameter for the rapid and accurate diagnosis of LAE in patients with PAF.


Subject(s)
Atrial Fibrillation , Computed Tomography Angiography , Heart Atria , Predictive Value of Tests , Humans , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Female , Male , Middle Aged , Heart Atria/diagnostic imaging , Heart Atria/physiopathology , Aged , Reproducibility of Results , Atrial Function, Left , Atrial Remodeling , Retrospective Studies , Cardiomegaly/diagnostic imaging , Multidetector Computed Tomography , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/physiopathology
4.
Front Immunol ; 15: 1461987, 2024.
Article in English | MEDLINE | ID: mdl-39318632

ABSTRACT

Objective: We aimed to investigate human epididymis protein 4 (HE4) as a potential biomarker in patients with pediatric-onset systemic lupus erythematosus (pSLE), particularly on the association of serum HE4 levels with disease activity and other laboratory tests. Methods: We included 137 patients with pSLE and 75 age- and sex-matched healthy controls (HCs). Serum HE4 level was measured by a chemiluminescent microparticle on an Abbott ARCHITECT i2000SR Immunoassay Analyzer. Comparisons between groups were performed using the independent Student t-test, Mann-Whitney U test, Chi-square test, or Fisher's exact test, as appropriate. We also determined the relationships between HE4 and clinical parameters and evaluated disease activity using SLE Disease Activity Index (SLEDAI) and renal SLEDAI (rSLEDAI). Results: Serum HE4 levels in patients with pSLE (44.6 pmol/L; IQR, 32.5-73.5) were significantly higher than those in HCs (38.9 pmol/L; IQR, 34-46.1). HE4 levels were significantly higher in moderate to severe disease activities (57.4 pmol/L, IQR 37.7-164.5) than in mild disease activities (38.8 pmol/L, IQR 30.1-48.5) or HCs (38.9 pmol/L, IQR 34.0-46.1), as well as in active renal disease activities (77.2 pmol/L, IQR 47.4-224.1) than in inactive renal disease activities (36.1 pmol/L, IQR 27.8-46.7). The ROC curve analysis showed that HE4 could discriminate pSLE with renal (AUC, 0.717; 95% CI, 0.632-0.801), hematological (AUC, 0.740; 95% CI, 0.648-0.831), and cardiovascular involvement (AUC:0.775, 95% CI 0.669-0.880). Serum HE4 levels significantly correlated with several indicators related to renal morbidity, such as creatinine, blood urea nitrogen, uric acid, cystatin C, urine protein/24 h, etc. Conclusion: Serum HE4 levels in pSLE were elevated and highly associated with disease activity and systemic involvement, indicating HE4 as a potential biomarker for pSLE.


Subject(s)
Biomarkers , Lupus Erythematosus, Systemic , WAP Four-Disulfide Core Domain Protein 2 , Humans , WAP Four-Disulfide Core Domain Protein 2/analysis , WAP Four-Disulfide Core Domain Protein 2/metabolism , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Male , Female , Biomarkers/blood , Child , Adolescent , Severity of Illness Index , Age of Onset , Case-Control Studies , ROC Curve
5.
Nat Genet ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251788

ABSTRACT

Androgen receptor (AR) is a ligand-responsive transcription factor that drives terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to activate malignant phenotypes, the molecular mechanisms of which remain unknown. Here, we show that tumor-specific AR enhancers are critically reliant on H3K36 dimethyltransferase activity of NSD2. NSD2 expression is abnormally induced in prostate cancer, where its inactivation impairs AR transactivation potential by disrupting over 65% of its cistrome. NSD2-dependent AR sites distinctively harbor the chimeric FOXA1:AR half-motif, which exclusively comprise tumor-specific AR enhancer circuitries defined from patient specimens. NSD2 inactivation also engenders increased dependency on the NSD1 paralog, and a dual NSD1/2 PROTAC degrader is preferentially cytotoxic in AR-dependent prostate cancer models. Altogether, we characterize NSD2 as an essential AR neo-enhanceosome subunit that enables its oncogenic activity, and position NSD1/2 as viable co-targets in advanced prostate cancer.

6.
Environ Geochem Health ; 46(10): 418, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249634

ABSTRACT

Fluoride (F) is a trace element that is essential to the human body and occurs naturally in the environment. However, a deficiency or excess of F in the environment can potentially lead to human health issues. The pseudototal amount of F in soil often does not correlate directly with the F content in plants. Instead, the F content within plants tends to have a greater correlation with the bioavailable F in soils. In large-scale soil surveys, only the pseudototal elemental content of soils is typically measured, which may not be highly reliable for developing agricultural zoning plans. There are significant variations in the ability of different plants to accumulate F from soil. Additionally, due to variations in soil elemental absorption mechanisms among different plant species, when multiple crops are grown in an area, it is typically necessary to study the elemental absorption mechanisms of each crop. To address these issues, in this study, we examined the factors influencing F bioaccumulation coefficients in different crops based on 1:50,000 soil geochemical survey data. Using the random forest algorithm, four indicators-bioavailable P, bioavailable Zn, leachable Pb, and Sr-were selected from among 29 parameters to predict the F content within crops to replace bioavailable F in the soil. Compared with the multivariate linear regression (MLR) model, the random forest (RF) model provided more accurate and reliable predictions of the fluoride content in crops, with the RF model's prediction accuracy improving by approximately 95.23%. Additionally, while the partial least squares regression (PLSR) model also offered improved accuracy over MLR, the RF model still outperformed PLSR in terms of prediction accuracy and robustness. Additionally, it maximized the utilization of existing geochemical survey data, enabling cross-species studies for the first time and avoiding redundant evaluations of different types of agricultural products in the same region. In this investigation, we selected the Xining-Ledu region of Qinghai Province, China, as the study area and employed a random forest model to predict the crop F content in soils, providing a new methodological framework for crop production that effectively enhances agricultural quality and efficiency.


Subject(s)
Algorithms , Crops, Agricultural , Fluorides , Soil Pollutants , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Fluorides/analysis , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring/methods , Linear Models , Random Forest
7.
Front Plant Sci ; 15: 1445875, 2024.
Article in English | MEDLINE | ID: mdl-39224848

ABSTRACT

The regulation of gene expression is crucial for biological plant growth and development, with transcription factors (TFs) serving as key switches in this regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs that play a key role in regulating genes related to photosynthesis and chloroplast biogenesis. Here, we summarized the current knowledge of the pleiotropic roles of GLKs in plants. In addition to their primary functions of controlling chloroplast biogenesis and function maintenance, GLKs have been proven to regulate the photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf senescence, and response to biotic and abiotic stress, ultimately contributing to crop yield. This review will provide a comprehensive understanding of the biological functions of GLKs and serve as a reference for future theoretical and applied studies of GLKs.

8.
J Dig Dis ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227029

ABSTRACT

OBJECTIVES: Endoscopic necrosectomy (EN) is a promising minimally invasive approach for treating infected walled-off pancreatic necrosis (WOPN). Multiple EN approaches are currently available, though criteria for selecting the optimal approaches are lacking. We aimed to propose a rational selection strategy of EN and to retrospectively evaluate its safety and effectiveness. METHODS: Altogether 101 patients who underwent EN for infected WOPN at a tertiary hospital between June 2009 and February 2023 were retrospectively included for analysis. Demographic characteristics, details of the EN procedures, procedure-related adverse events, and clinical outcomes were investigated. RESULTS: Among these 101 patients with WOPN, 56 (55.4%) underwent transluminal EN, 38 (37.6%) underwent percutaneous EN, and seven (6.9%) underwent combined approach, respectively. Clinical success was achieved in 94 (93.1%) patients. Seven (6.9%) experienced procedure-related adverse events, and seven (6.9%) died during the treatment period. During a median follow-up of 50 months, 5 (5.3%) of the 94 patients had disease recurrence, 17.0% (16/94) had new-onset diabetes mellitus, and 6.4% (6/94) needed oral pancreatic enzyme supplementation. The clinical success rate, procedure-related adverse event rate, and long-term follow-up outcomes were not significantly different among the three groups. High APACHE-II scores (≥15) and organ failure were identified as factors related to treatment failure. CONCLUSIONS: A selection strategy for EN approaches, based on the extent of necrosis and its distance from the gastrointestinal lumen (using a threshold of 15 mm), is safe and effective for treating infected WOPN in both short-term and long-term outcomes.

9.
Front Neurol ; 15: 1402004, 2024.
Article in English | MEDLINE | ID: mdl-39246608

ABSTRACT

Objective: The success rate of achieving seizure freedom after radiofrequency thermocoagulation surgery for patients with refractory focal epilepsy is about 20-40%. This study aims to enhance the prediction of surgical outcomes based on preoperative decisions through network model simulation, providing a reference for clinicians to validate and optimize surgical plans. Methods: Twelve patients with epilepsy who underwent radiofrequency thermocoagulation were retrospectively reviewed in this study. A coupled model based on model subsets of the neural mass model was constructed by calculating partial directed coherence as the coupling matrix from stereoelectroencephalography (SEEG) signals. Multi-channel time-varying model parameters of excitation and inhibitions were identified by fitting the real SEEG signals with the coupled model. Further incorporating these model parameters, the coupled model virtually removed contacts destroyed in radiofrequency thermocoagulation or selected randomly. Subsequently, the coupled model after virtual surgery was simulated. Results: The identified excitatory and inhibitory parameters showed significant difference before and after seizure onset (p < 0.05), and the trends of parameter changes aligned with the seizure process. Additionally, excitatory parameters of epileptogenic contacts were higher than that of non-epileptogenic contacts, and opposite findings were noticed for inhibitory parameters. The simulated signals of postoperative models to predict surgical outcomes yielded an area under the curve (AUC) of 83.33% and an accuracy of 91.67%. Conclusion: The multi-channel coupled model proposed in this study with physiological characteristics showed a desirable performance for preoperatively predicting patients' prognoses.

10.
Transl Cancer Res ; 13(8): 4354-4371, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39262489

ABSTRACT

Background: Ovarian cancer (OC) is a kind of lethiferous cancer in gynecology, and the development of chemoresistance is the brief reason for treatment failure. The genes which contribute to chemoresistance are often leading to short survival. Thus, this study aims to identify predictive markers for chemoresistance and survival from chemoresistant-related genes. Methods: Coremine was used to retrieve of genes linked to OC chemoresistance. The relationship of genes with patient survival was analyzed in 489 OC patients of The Cancer Genome Atlas (TCGA) cohort, which the subgroup of 90 resistant and 197 sensitive samples was used to determine gene expression. Kaplan-Meier (KM) plotter of 1,816 OC patients with survival data was retrieved for survival analysis. Survival analysis was carried out by the R survival package in R (version 3.3.1). KM and receiver operating characteristic (ROC) curve were respectively used to access the ability of a gene to predict survival and chemoresistance. Results: In this study, a group of genes potentially linked to OC chemoresistance was identified, which dysregulated in 90 chemoresistant tissues compared with 197 sensitive tissues. Of them, thirteen genes could predict chemoresistance in 1,347 patients, especially SOS1, MSH6, STAT5A were excellent for predicting chemoresistance to any drugs, platin and taxane, CASP2 and PARD6B for any drugs and platin, and HSP90AA1 and HSP90B1 for taxane. Meanwhile, 44 genes linked to OC chemoresistance could predict short overall survival (OS) and/or disease-free survival (DFS) in 489 OC patients, and 10 of them could predict short OS in large cohort of up to 1,657 patients. Finally, it is noteworthy that CASP2 was down-regulated in 90 chemoresistant samples, and low expression of the gene predicted chemoresistance in 1,347 patients, short OS and DFS in 489 patients, and short OS and progression-free survival (PFS) in 1,657 patients. Conclusions: The identified genes specifically the CASP2 might be potentially used as predictive marker, prognostic marker and therapeutic target in management of OC.

11.
Environ Monit Assess ; 196(10): 919, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256236

ABSTRACT

Accurate assessments of the soil environmental capacity are important for evaluating heavy metal pollution levels, facilitating effective prevention and control measures against such pollution. However, due to the lack of risk screening values for certain key elements, such as Rb, Sn, and Th, the assessment of the soil environmental capacity is not comprehensive. Therefore, in this study, the Menyuan-Huangzhong area of Qinghai Province was selected as the research area, and local background and risk values were established via multifractal analysis, thereby systematically examining the environmental capacity. The findings indicated that within the study area, the static environmental capacity values of 15 elements could be ranked as follows: Ba, Cu, Zn, Cr, Rb, Ni, La, Pb, Th, As, U, Sn, Tl, Cd, and Hg. In general, the residual capacity distribution of the various elements varied across the study area, with lower values primarily found in the northern and central regions and higher values obtained in the northwestern and southwestern regions. Between 2018 and 2068, there was a notable and rapid decline in the dynamic environmental capacity of Hg, Cu, and Cd in the study area. In the Menyuan-Huangzhong area of Qinghai, the average comprehensive soil environmental capacity index reached 0.91, indicating a moderate environmental capacity and slight associated health risks. The findings of this study could serve as a valuable reference for soil heavy metal pollution assessment, early warning, and management in this area; enhance the study of soil environmental capacity methods; and provide a theoretical foundation for subsequent research.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Tibet , China , Soil/chemistry , Environmental Pollution/statistics & numerical data
12.
Chem Sci ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39257856

ABSTRACT

Natural enzymes are able to function effectively under optimal physiological conditions, but the intrinsic performance often fails to meet the demands of industrial production. Existing strategies are based mainly on the evaluation and subsequent combination of single-point mutations; however, this approach often suffers from a limited number of designable residues and from low accuracy. Here, we propose a strategy (Co-MdVS) based on coevolutionary analysis and multidimensional virtual screening for precise design to improve enzyme robustness, employing nattokinase as a model. Using this strategy, we efficiently screened 8 dual mutants with enhanced thermostability from a virtual mutation library containing 7980 mutants. After further iterative combination, the optimal mutant M6 exhibited a 31-fold increase in half-life at 55 °C, significantly enhanced acid resistance, and improved catalytic efficiency with different substrates. Molecular dynamics simulations indicated that the reduced flexibility of thermal and acid-sensitive regions resulted in a significantly increased robustness of M6. Furthermore, the potential of multidimensional virtual screening in enhancing design precision has been validated on l-rhamnose isomerase and PETase. Therefore, the Co-MdVS strategy introduced in this research may offer a viable approach for developing enzymes with enhanced robustness.

14.
Food Chem ; 463(Pt 2): 141345, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39305669

ABSTRACT

Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.

16.
Fish Shellfish Immunol ; 154: 109918, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307257

ABSTRACT

Gill remodeling is an important strategy for fish to cope with hypoxia, and many of the teleost possess this ability, but the underlying mechanism is not well understood. To investigate the mechanism of hypoxia-induced gill remodeling, largemouth bass (Micropterus salmoides) exposed to hypoxia (dissolved oxygen level: 2.0 ± 0.2 mg L-1) for 7 days, followed by 7 days of reoxygenation. Hypoxia tests were also performed on primary gill cells from largemouth bass. We found that hypoxia-induced gill remodeling increased the respiratory surface area of the gills. This change in gill morphology was reversible and recovered after reoxygenation. A reduction in the number of mucous cells and rearrangement of mitochondria-rich cells (MRCs) were observed during gill remodeling. After 7 days of reoxygenation, the number of mucous cells and the position of the MRCs were restored. Hypoxia resulted in a 2.92-fold increase in the number of primary gill cells that underwent migration over a 12-h period. The mRNA levels of nine integrin subunits (α1, α2, α5, α7, α8, α10, αL, ß1 and ß2) were significantly up-regulated after 12 h of hypoxia in vivo, and the changes in the expression of these subunits were consistent with the HIF-1α trend. Immunohistochemistry showed that integrin ß1 protein levels were significantly increased and were abundantly expressed in the interlamellar cell mass after exposure to hypoxia. Taken together, the results of the present study demonstrated that changes in mucosal cells and MRCs play an important role in hypoxia-induced gill remodeling in largemouth bass and that these changes are regulated by integrins.

17.
Foods ; 13(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39335829

ABSTRACT

In this work, a novel reinforcing filler, millet gliadin (MG), was used for the improvement of the mechanical properties of zein nanofibers. The structural and physicochemical properties of MG were compared with those of zein, and the influence of MG on the morphology, physical properties, and molecular structure of zein nanofibers was investigated. The results indicated that MG has an obviously smaller weight-average molecular weight (7623) in comparison to zein (13,330). Transmission electron microscopy showed that zein molecules more easily form aggregates with larger diameters than MG molecules in acetic acid. At a concentration of 30% (w/v), MG exhibited a significantly higher viscosity (0.66 ± 0.03 Pa·s) than zein (0.32 ± 0.01 Pa·s), indicating the stronger interactions of MG molecules. With the incorporation of MG, the tensile strength was significantly increased to 49.32 MPa (ZM-1/2), which is 2.08 times and 4.45 times higher than that of pure zein nanofibers (ZM-1/0) and MG nanofibers (ZM-0/1-1), respectively. Moreover, zein/MG composite nanofibers exhibited improved water stability. Fourier transform infrared spectra showed evidence of the hydrogen bonding interaction between zein and MG. Therefore, MG is a good candidate for use as a natural reinforcing filler in electrospun nanofibers made of biopolymers.

18.
Chem Commun (Camb) ; 60(76): 10500-10503, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39207358

ABSTRACT

Layered silicon (L-Si) anodes are celebrated for their high theoretical capacity but face significant challenges regarding safety and material purity during preparation. This study addresses these challenges by employing NH4Cl-CaSi2 as the raw material in a gas-solid de-alloying process, which enhances both safety and purity compared to traditional methods. The L-Si anodes produced demonstrate outstanding electrochemical performance, delivering a high reversible lithium storage capacity of 1497.7 mA h g-1 at a current density of 0.5 A g-1, and exhibiting stable performance over 1200 charge-discharge cycles. In situ and ex situ characterizations reveal that electrolyte decomposition products effectively fill the voids within the electrode, while the gradual disintegration of the L-Si structure contributes to the formation of a dense, conductive network. This process enhances lithium ion transport and exploits the capacitive storage benefits of layered silicon.

19.
Comput Biol Chem ; 112: 108174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191168

ABSTRACT

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Prognosis , Neovascularization, Pathologic/genetics , Angiogenesis
20.
Environ Geochem Health ; 46(10): 406, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212763

ABSTRACT

The Qinghai-Tibet Plateau is particularly vulnerable to the effects of climate change and disturbances caused by human activity. To better understand the interactions between soil nitrogen and sulfur cycles and human activities on the plateau, the distribution characteristics of soil nitrogen and sulfur density and their influencing factors for three soil layers in Machin County at depths of 0-20 cm, 0-100 cm, and 0-180 cm are discussed in this paper. The results indicated that at depths of 0-180 cm, soil nitrogen density in Machin County varied between 1.36 and 16.85 kg/m2, while sulfur density ranged from 0.37 to 4.61 kg/m2. The effects of three factors-geological background, land use status, and soil type-on soil nitrogen and sulfur density were all highly significant (p < 0.01). Specifically, natural factors such as soil type and geological background, along with anthropogenic factors including land use practices and grazing intensity, were identified as decisive in causing spatial variations in soil nitrogen and sulfur density. Machin County on the Tibetan Plateau exhibits natural nitrogen and sulfur sinks; However, it is crucial to monitor the emissions of N2O and SO2 into the atmosphere from areas with high external nitrogen and sulfur inputs and low fertility retention capacities, such as bare land. On this basis, changes in the spatial and temporal scales of the nitrogen and sulfur cycles in soils and their source-sink relationships remain the focus of future research.


Subject(s)
Greenhouse Gases , Nitrogen , Soil , Sulfur , Soil/chemistry , Nitrogen/analysis , Greenhouse Gases/analysis , Sulfur/analysis , Tibet , Environmental Monitoring , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL