Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37837159

ABSTRACT

Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight. To detect strain on the spine and to control the smart textile automatically, a soft knitting sensor that utilizes fluid pressure as a sensing element is used. Based on the soft knitting hydraulic sensor, the robotic exosuit can also feature the ability of monitoring and rectifying human posture. The SARE is validated experimentally with human subjects (N = 4). Through wearing the SARE in stoop lifting, the peak electromyography (EMG) signals of the lumbar erector spinae are reduced by 22.8% ± 12 for lifting 5 kg weights and 27.1% ± 14 in empty-handed conditions. Moreover, the integrated EMG decreased by 34.7% ± 11.8 for lifting 5 kg weights and 36% ± 13.3 in empty-handed conditions. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.


Subject(s)
Movement , Posture , Humans , Electromyography , Spine , Back Pain , Lifting , Biomechanical Phenomena
2.
Sensors (Basel) ; 20(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784557

ABSTRACT

An autonomous concrete crack inspection system is necessary for preventing hazardous incidents arising from deteriorated concrete surfaces. In this paper, we present a concrete crack detection framework to aid the process of automated inspection. The proposed approach employs a deep convolutional neural network architecture for crack segmentation, while addressing the effect of gradient vanishing problem. A feature silencing module is incorporated in the proposed framework, capable of eliminating non-discriminative feature maps from the network to improve performance. Experimental results support the benefit of incorporating feature silencing within a convolutional neural network architecture for improving the network's robustness, sensitivity, and specificity. An added benefit of the proposed architecture is its ability to accommodate for the trade-off between specificity (positive class detection accuracy) and sensitivity (negative class detection accuracy) with respect to the target application. Furthermore, the proposed framework achieves a high precision rate and processing time than the state-of-the-art crack detection architectures.

3.
Sensors (Basel) ; 20(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708656

ABSTRACT

The non-destructive evaluation (NDE) of civil infrastructure has been an active area of research in recent decades. The traditional inspection of civil infrastructure mostly relies on visual inspection using human inspectors. To facilitate this process, different sensors for data collection and techniques for data analyses have been used to effectively carry out this task in an automated fashion. This review-based study will examine some of the recent developments in the field of autonomous robotic platforms for NDE and the structural health monitoring (SHM) of bridges. Some of the salient features of this review-based study will be discussed in the light of the existing surveys and reviews that have been published in the recent past, which will enable the clarification regarding the novelty of the present review-based study. The review methodology will be discussed in sufficient depth, which will provide insights regarding some of the primary aspects of the review methodology followed by this review-based study. In order to provide an in-depth examination of the state-of-the-art, the current research will examine the three major research streams. The first stream relates to technological robotic platforms developed for NDE of bridges. The second stream of literature examines myriad sensors used for the development of robotic platforms for the NDE of bridges. The third stream of literature highlights different algorithms for the surface- and sub-surface-level analysis of bridges that have been developed by studies in the past. A number of challenges towards the development of robotic platforms have also been discussed.

4.
IEEE Trans Cybern ; 43(2): 766-78, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23070310

ABSTRACT

In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...