Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol Invest ; 43(3): 399, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31559585

ABSTRACT

Unfortunately, the 13th author name has been published incorrectly in the original publication.

2.
J Endocrinol Invest ; 43(2): 231-245, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31486992

ABSTRACT

PURPOSE: Familial isolated hyperparathyroidism (FIHP) is a rare inherited disease accounting for 1% of all cases of primary hyperparathyroidism (PHPT). It is genetically heterogeneous being associated with mutations in different genes, including MEN1, CDC73, CASR, and recently GCM2. The aim of the study was to further investigate the molecular pathogenesis in Italian FIHP kindreds. METHODS: We used whole exome sequencing (WES) in the probands of seven unrelated FIHP kindreds. We carried out a separate family-based exome analysis in a large family characterized by the co-occurrence of PHPT with multiple tumors apparently unrelated to the disease. Selected variants were also screened in 18 additional FIHP kindreds. The clinical, biochemical, and pathological characteristics of the families were also investigated. RESULTS: Three different variants in GCM2 gene were found in two families, but only one (p.Tyr394Ser), already been shown to be pathogenic in vitro, segregated with the disease. Six probands carried seven heterozygous missense mutations segregating with the disease in the FAT3, PARK2, HDAC4, ITPR2 and TBCE genes. A genetic variant in the APC gene co-segregating with PHPT (p.Val530Ala) was detected in a family whose affected relatives had additional tumors, including colonic polyposis. CONCLUSION: We confirm the role of GCM2 germline mutations in the pathogenesis of FIHP, although at a lower rate than in the previous WES study. Further studies are needed to establish the prevalence and the role in the predisposition to FIHP of the novel variants in additional genes.


Subject(s)
Exome Sequencing/methods , Genetic Variation/genetics , Hyperparathyroidism, Primary/diagnostic imaging , Hyperparathyroidism, Primary/genetics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Pedigree , Young Adult
3.
J Neurooncol ; 126(2): 265-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26511493

ABSTRACT

Glioblastoma is the most common and aggressive malignant primary brain tumor. Despite decades of research and the advent of new therapies, patients with glioblastoma continue to have a very poor prognosis. Radiation therapy has a major role as adjuvant treatment for glioblastoma following surgical resection. Many studies have shown that polymorphisms of genes involved in pathways of DNA repair may affect the sensitivity of the cells to treatment. Although the role of these polymorphisms has been investigated in relation to response to radiotherapy, their role as predisposing factors to glioblastoma has not been clarified yet. In the present study, we evaluated the association between polymorphisms in DNA repair genes, namely: XRCC1 rs25487, XRCC3 rs861539 and RAD51 rs1801320, with the susceptibility to develop glioblastoma. Eighty-five glioblastoma patients and 70 matched controls were recruited for this study. Data from the 1000 Genomes Project (98 Tuscans) were also downloaded and used for the association analysis. Subjects carrying RAD51 rs1801320 GC genotype showed an increased risk of glioblastoma (GC vs GG, χ(2) = 10.75; OR 3.0087; p = 0.0010). The C allele was also significantly associated to glioblastoma (χ(2) = 8.66; OR 2.5674; p = 0.0032). Moreover, RAD51 rs1801320 C allele increased the risk to develop glioblastoma also when combined to XRCC1 rs25487 G allele and XRCC3 rs861539 C allele (χ(2) = 6.558; p = 0.0053).


Subject(s)
Brain Neoplasms/genetics , DNA Repair , Glioblastoma/genetics , Polymorphism, Single Nucleotide , Rad51 Recombinase/genetics , Aged , DNA-Binding Proteins/genetics , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Risk Factors , X-ray Repair Cross Complementing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...