Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791526

ABSTRACT

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.


Subject(s)
Anti-Bacterial Agents , Antibodies, Monoclonal , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Animals , Drug Resistance, Bacterial/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/therapeutic use , Bacterial Infections/immunology , Bacterial Infections/drug therapy
2.
Biology (Basel) ; 13(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38666868

ABSTRACT

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium, and a leading cause of neonatal sepsis in low- and middle-income countries, often associated with anti-microbial resistance. Two types of polysaccharides are expressed on the Kp cell surface and have been proposed as key antigens for vaccine design: capsular polysaccharides (known as K-antigens, K-Ags) and O-antigens (O-Ags). Historically, Kp has been classified using capsule serotyping and although 186 distinct genotypes have been predicted so far based on sequence analysis, many structures are still unknown. In contrast, only 11 distinct OAg serotypes have been described. The characterization of emerging strains requires the development of a high-throughput purification method to obtain sufficient K- and O-Ag material to characterize the large collection of serotypes and gain insight on structural features and potential cross-reactivity that could allow vaccine simplification. Here, this was achieved by adapting our established method for the simple purification of O-Ags, using mild acetic acid hydrolysis performed directly on bacterial cells, followed by filtration and precipitation steps. The method was successfully applied to purify the surface carbohydrates from different Kp strains, thereby demonstrating the robustness and general applicability of the purification method developed. Further, antigen characterization showed that the purification method had no impact on the structural integrity of the polysaccharides and preserved labile substituents such as O-acetyl and pyruvyl groups. This method can be further optimized for scaling up and manufacturing to support the development of high-valency saccharide-based vaccines against Kp.

SELECTION OF CITATIONS
SEARCH DETAIL
...