Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 12(6): 1323-30, 2010 Feb 14.
Article in English | MEDLINE | ID: mdl-20119610

ABSTRACT

The processes involved in the butene hydro-isomerization, occurring on a small palladium cluster in the presence of dissociated hydrogen, have been investigated by means of DFT and DFT/MM approaches. This study has been performed both on an isolated (unsupported) Pd(9) cluster and on the same cluster when it is supported on a portion of a single-walled armchair(6,6) carbon nanotube. The study follows another investigation which has already been published concerning the adsorption, fragmentation and diffusion of hydrogen on the same metal cluster. The main aspects involved in the parallel reaction steps of the whole hydro-isomerization mechanisms are not strongly affected by the presence of the support, which does, however, modify the energetics involved, likely due to the presence of strong metal surface interaction (SMSI) effects. Noticeably, a common step corresponding to the diffusion of one hydrogen atom is present. This diffusion step creates a characteristic semihydrogenated surface species along the occurrence of all the reaction pathways. Hence, the semihydrogenated species is a kind of molecular node able to connect the transformation pathways of the different surface species involved in the hydro-isomerization processes. Considering the energetics involved in the processes of both supported and unsupported systems and being aware of the simplification introduced in studying the same systems, it is still possible (i) to emphasize the basis importance of taking account of the support in modeling catalytic properties and (ii) to state that the models proposed here are able to capture the main characteristics of the title reaction.

2.
Phys Chem Chem Phys ; 11(20): 4077-83, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19440638

ABSTRACT

The processes of adsorption, fragmentation and diffusion of hydrogen on a small palladium cluster have been investigated by means of DFT and DFT/MM approaches. These studies have been performed by considering a D(3h) symmetry Pd(9) in the isolated state as well as when supported on a portion of single-walled armchair(6,6) carbon nanotube. The hydrogen fragmentation process easily occurs on the bare Pd(9) cluster, involving energy barriers of 25-35 kJ mol(-1) and the drop in spin multiplicity on passing from the reactant to the product. The atomic hydrogen diffuses through the cluster atoms with energy barriers, which do not exceed 20 kJ mol(-1), with some positions clearly identifiable as the most stable. In the case of the palladium supported system, which is a better model to simulate experimental conditions, calculations predict that the hydrogen fragmentation barrier is reduced by ca. 15 kJ mol(-1), with respect to that of the unsupported system, while the energetics of the diffusive process is not significantly affected by the support, if the reduction of the number of sites available in the same palladium cluster, as well as their geometry, are taken into account.

3.
Molecules ; 13(6): 1246-52, 2008 Jun 03.
Article in English | MEDLINE | ID: mdl-18596651

ABSTRACT

Density Functional Theory (DFT) calculations have been performed on the TTC-->TTT isomerization reaction of the open forms of the 1',3'-dihydro-8-bromo-6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-(2H)indole (8-Br-6-nitro-BIPS) system. The calculations were carried out in vacuo and in methylene chloride solution at different temperatures. Results are compared with the available experimental values of free energy difference and activation energy in solution.


Subject(s)
Benzopyrans/chemistry , Indoles/chemistry , Models, Molecular , Nitro Compounds/chemistry , Pyrimidinones/chemistry , Fluorescent Dyes , Methylene Chloride , Models, Theoretical , Solutions , Stereoisomerism , Thermodynamics , Vacuum
4.
J Chem Theory Comput ; 4(3): 542-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-26620794

ABSTRACT

The structures and the electronic properties of host-guest complexes formed by a cyclopeptidic tubular aggregate and the species CsN3, Cs2(N3)2, and Cs2N6 have been investigated by means of density functional theory. Taking advantage of the azide property to act as a bridge ligand between two or more metal cations, it may be possible to trapions inside a confined space. This could be important for the preparation of polynitrogen molecules Nn. Results show that there are significant attractive interactions between the azide ion and the cavity walls, which make the ion stay inside the inner empty space of the cyclopeptidic aggregate. The confinement of the species Cs2(N3)2 forces the azide moieties to get closer together. Further, the Cs2N6 molecule shows a remarkable interaction with the tubular host, which may indicate a stabilization of N6.

5.
Article in English | MEDLINE | ID: mdl-17625960

ABSTRACT

The structure and the Raman vibrational spectrum of the complex Br(2)...3-Br-pyridine are determined by DFT calculations using different parametrizations. The calculations are performed taking into account the effects of the dichloromethane as solvent by the CPCM method. A value of 39 kJ mol(-1) for the formation enthalpy and of 1 kJ mol(-1) for the formation free energy at room temperature in presence of the solvent is found. The predicted Raman spectrum is compared with the experimental one and the essential features of the spectrum are well reproduced by the B3LYP parametrization. The intensity changes of the bands when going from the free moieties to the complex are also generally correctly predicted by the theoretical treatment.


Subject(s)
Bromine/chemistry , Models, Chemical , Pyridines/chemistry , Spectrum Analysis, Raman , Entropy , Molecular Conformation
6.
J Comput Chem ; 28(13): 2085-90, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17450556

ABSTRACT

DFT calculations have been carried out to describe the pathway of a sodium ion along the stacking direction of a tubular structure set up by five cyclopeptidic units, which can be considered a suitable model of a hollow tubular structure of indefinite length. A lattice of points inside the tubular structure is defined and the DFT interaction energy values with a sodium ion are obtained. The data allow predicting a zigzag path of the ion inside the hosting structure.


Subject(s)
Computer Simulation , Models, Molecular , Nanotubes, Peptide/chemistry , Sodium/chemistry , Glycine/chemistry , Molecular Conformation , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Thermodynamics
7.
Chemistry ; 11(21): 6185-91, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16052634

ABSTRACT

DFT calculations, using an all-electron basis set and with full geometry optimization, were performed on 34 Sn(II) and Sn(IV) compounds of known structure and (119)Sn Mössbauer parameters, to obtain the theoretical values of the electric field gradient components, V(xx), V(yy), and V(zz), at the tin nucleus. These were used to determine the quantity V = V(zz)[1+ 1/3((V(xx) - V(yy))/((V(zz))(2)](1/2), for each investigated compound, which is related to the quadrupole splitting (DeltaE) parameter according to DeltaE = 1/2eQV, where e is the electronic charge and Q is the quadrupole moment of the tin nucleus. The linear fitting of the correlation plot of the experimental DeltaE, versus the corresponding calculated V values, produced a slope that is equal to 0.93 +/- 0.03 and a correlation coefficient R = 0.982. The value of Q obtained, 15.2 +/- 4.4 fm(2), is in agreement with that previously experimentally determined or calculated by analogous procedures. The calculation method is able to establish the sign of the electric field gradient component V(zz), in agreement with the sign of DeltaE determined experimentally by Mössbauer-Zeeman spectroscopy. The calculated structural parameters are in good agreement with the corresponding experimental data, determined by X-ray crystallography in the solid state, with average structural deviations of about 3 % for bond lengths and angles in the tin environment. Calculated values of DeltaE were obtained from the calibration fitting constant and from the values of V. By comparing experimental and calculated DeltaE parameters, the structure assignment of configurational isomers was successful in two test cases, in agreement with the experimental X-ray crystallographic structures. These results indicate that the method can be used as a tool to support the routine structure interpretation of tin compounds by (119)Sn Mössbauer spectroscopy.

8.
Faraday Discuss ; 124: 63-8; discussion 85-92, 453-5, 2003.
Article in English | MEDLINE | ID: mdl-14527210

ABSTRACT

An attempt has been made to study the reaction between a uranium atom and a nitrogen molecule theoretically using multiconfigurational wave functions. The C2v part of the reaction surface has been computed for several electronic states of various spin mulltiplicities. The system proceeds from a neutral uranium atom in its (5f)3(6d)(7s)2, 5L ground state to the linear molecule NUN, which has a 1sigma(+)g ground state and uranium in a formal U(VI) oxidation state. The effect of spin-orbit coupling has been estimated at crucial points along the reaction. These preliminary results shows that the system proceeds from a quintet state for U + N2, via a triplet transition state to the final closed shell molecule. An eventual energy barrier for the insertion reaction is caused by the spin orbit coupling energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...