Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 173: 112100, 2023 03.
Article in English | MEDLINE | ID: mdl-36690048

ABSTRACT

Rat brain and heart display different endogenous protective responses against hypobaric hypoxia in an age-dependent way. The aim of the present work was to evaluate the effects of acute hypobaric hypoxia (HH, 48 h) on brain and heart mitochondrial function as well as the participation of nitric oxide (NO) in old rats (22-month old). Cortical mitochondria from rats exposed to HH decreased respiratory rates (37 %, state 3) and membrane potential (20 %), but NO and H2O2 production increased by 48 %, and 23 %, respectively. Hippocampal mitochondria preserved O2 consumption and H2O2 production, decreased membrane potential (18 %) and increased NO production (46 %). By contrast, HH decreased NO production (53 %) in mitochondria from left heart ventricles associated with increased cytochrome oxidase activity (39 %) and decreased NADPH oxidase activity (31 %). Also, a tendency to increase complex I-III (24 %) and complex II-III (65 %) activity was observed. In conclusion, after HH hippocampal and cortical mitochondria showed mild uncoupling and increased NO production. However, only the hippocampus preserved O2 consumption and H2O2 levels. Interestingly, heart mitochondria showed a decreased ROS production through increased cytochrome oxidase activity associated with a decrease in NO production. This may be interpreted as a self-protective mechanism against hypoxia.


Subject(s)
Electron Transport Complex IV , Nitric Oxide , Animals , Rats , Hippocampus/metabolism , Hydrogen Peroxide , Hypoxia , Mitochondria/metabolism , Nitric Oxide/metabolism , Heart
2.
Brain Res ; 1598: 66-75, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25527397

ABSTRACT

Taking into account the importance of aerobic metabolism in brain, the aim of the present work was to evaluate mitochondrial function in cerebral cortex and hippocampus in a model of sustained hypobaric hypoxia (5000 m simulated altitude) during a short (1 mo) and a long (7 mo) term period, in order to precise the mechanisms involved in hypoxia acclimatization. Hippocampal mitochondria from rats exposed to short-term hypobaric hypoxia showed lower respiratory rates than controls in both states 4 (45%) and 3 (41%), and increased NO production (1.3 fold) as well as eNOS and nNOS expression associated to mitochondrial membranes, whereas mitochondrial membrane potential decreased (7%). No significant changes were observed in cortical mitochondria after 1 mo hypobaric hypoxia in any of the mitochondrial functionality parameters evaluated. After 7 mo hypobaric hypoxia, oxygen consumption was unchanged as compared with control animals both in hippocampal and cortical mitochondria, but mitochondrial membrane potential decreased by 16% and 8% in hippocampus and cortex respectively. Also, long-term hypobaric hypoxia induced an increase in hippocampal NO production (0.7 fold) and in eNOS expression. A clear tendency to decrease in H2O2 production was observed in both tissues. Results suggest that after exposure to hypobaric hypoxia, hippocampal mitochondria display different responses than cortical mitochondria. Also, the mechanisms responsible for acclimatization to hypoxia would be time-dependent, according to the physiological functions of the brain studied areas. Nitric oxide metabolism and membrane potential changes would be involved as self-protective mechanisms in high altitude environment.


Subject(s)
Cerebral Cortex/physiopathology , Hippocampus/physiopathology , Hypoxia/physiopathology , Mitochondria/physiology , Animals , Atmospheric Pressure , Hydrogen Peroxide/metabolism , Male , Membrane Potential, Mitochondrial/physiology , Models, Animal , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxygen Consumption/physiology , Rats, Wistar , Respiration , Time Factors
3.
Hypertension ; 27(3 Pt 2): 704-8, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8613228

ABSTRACT

We hypothesized that in cardiac muscles, angiotensin II partially inhibits the contractile response to beta-agonists. We studied the contractile response of isolated rat left ventricular papillary muscles to isoproterenol and the effect of angiotensin II on this response. We also investigated whether the effect of angiotensin II is mediated by bradykinin, prostaglandins, nitric oxide, and/or cGMP. Contractility of isolated papillary muscles was recorded with a force transducer, and rest tension, maximal developed tension (DT), maximal rate of rise in developed tension [T(+)], and maximal velocity of relaxation [T(-)] were measured (1) under basal conditions, (2) after pretreatment with various drugs, and (3) after cumulative doses of isoproterenol. Pretreatment groups included (1) vehicle (controls); (2) angiotensin II; (3) angiotensin II and N(omega)-nitro-L-arginine, an inhibitor of nitric oxide release; (4) L-arginine, the substrate for nitric oxide synthase; (5) L-arginine and N(omega)-nitro-L-arginine; (6) 8-bromo-cGMP, analogous to the second messenger of nitric oxide; (7) angiotensin II and icatibant (Hoe 140), a bradykinin B2 antagonist; and (8) angiotensin II and indomethacin, a cyclooxygenase inhibitor. There were no differences in contractile parameters before and after any of the pretreatments. Isoproterenol increased DT, T(+), and T(-), and these effects were attenuated by angiotensin II, L-arginine, and 8-bromo-cGMP. The effects of angiotensin II and L-arginine were blocked by inhibition of nitric oxide release with N(omega)-nitro-L-arginine. Neither the bradykinin B2 antagonist nor the cyclooxygenase inhibitor altered the effects of angiotensin II. We concluded that angiotensin II partially inhibits the contractile response of cardiac papillary muscles to isoproterenol This effect is likely mediated by nitric oxide release, perhaps acting via cGMP. Kinins and prostaglandins do not appear to participate in the inhibitory effect of angiotensin II. Attenuation of the contractile effect of isoproterenol by angiotensin II may help explain why cardiac function improves in heart failure after blockade of the renin-angiotensin system.


Subject(s)
Angiotensin II/pharmacology , Heart/physiology , Myocardial Contraction/drug effects , Nitric Oxide/metabolism , Animals , Kinins/antagonists & inhibitors , Kinins/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...