Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 27(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35807506

ABSTRACT

Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.

2.
Nanoscale ; 13(19): 8893-8900, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33949433

ABSTRACT

Quasi-2D (two-dimensional) hybrid perovskites are emerging as a new class of materials with high photoluminescence yield and improved stability compared to their three-dimensional (3D) counterparts. Nevertheless, despite their outstanding emission properties, few studies have been reported on amplified spontaneous emission (ASE) and a thorough understanding of the photophysics of these layered materials is still lacking. In this work, we investigate the ASE properties of multilayered quasi-2D BA3MA3Pb5Br16 films through the dependence of the photoluminescence on temperature and provide a novel insight into the emission processes of quasi-2D lead bromide perovskites. We demonstrate that the PL and ASE properties are strongly affected by the presence, above 190 K, of a minor fraction of the high temperature (HT) phase. This phase dominates the PL spectra at low excitation density and strongly affects the ASE properties. In particular, ASE is only present between 13 K and 230 K, and, at higher temperatures, it is suppressed by absorption of charge transfer states of the HT phase. Our results improve the understanding of the difficulties to obtain ASE at room temperature from these quasi-2D materials and are expected to guide possible materials improvement in order to exploit their excellent emission properties also for the realization of low threshold optically pumped lasers.

3.
RSC Adv ; 10(38): 22631-22644, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514545

ABSTRACT

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 4,5,6-trimethyl-2,2'-bipyridine (4,5,6-Me3bpy), 6-(tert-butyl)-2,2'-bipyridine (6-tBubpy) and 2-ethyl-1,10-phenanthroline (2-Etphen) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP, PIN [oxydi(2,1-phenylene)]bis(diphenylphosphane)) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos, PIN (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)) have been synthesized and their NMR spectroscopic, mass spectrometric, structural, electrochemical and photophysical properties were investigated. The single-crystal structures of [Cu(POP)(5,5'-Me2bpy)][PF6], [Cu(xantphos)(5,5'-Me2bpy)][PF6], [Cu(POP)(6-tBubpy)][PF6], [Cu(POP)(4,5,6-Me3bpy)][PF6]·1.5Et2O, [Cu(xantphos)(4,5,6-Me3bpy)][PF6]·2.33CH2Cl2, [Cu(POP)(2-Etphen)][PF6] and [Cu(xantphos)(2-Etphen)][PF6] are described. While alkyl substituents in general exhibit electron-donating properties, variation in the nature and substitution-position of the alkyl group in the N^N chelate leads to different effects in the photophysical properties of the [Cu(P^P)(N^N)][PF6] complexes. In the solid state, the complexes are yellow to green emitters with emission maxima between 518 and 602 nm, and photoluminescence quantum yields (PLQYs) ranging from 1.1 to 58.8%. All complexes show thermally activated delayed fluorescence (TADF). The complexes were employed in the active layer of light-emitting electrochemical cells (LECs). The device performance properties are among the best reported for copper-based LECs, with maximum luminance values of up to 462 cd m-2 and device half-lifetimes of up to 98 hours.

4.
Chempluschem ; 83(4): 217-229, 2018 Apr.
Article in English | MEDLINE | ID: mdl-31957280

ABSTRACT

Herein, [Cu(P^P)(N^N)][PF6 ] complexes (P^P=bis[2-(diphenylphosphino)phenyl]ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos); N^N=CF3 -substituted 2,2'-bipyridines (6,6'-(CF3 )2 bpy, 6-CF3 bpy, 5,5'-(CF3 )2 bpy, 4,4'-(CF3 )2 bpy, 6,6'-Me2 -4,4'-(CF3 )2 bpy)) are reported. The effects of CF3 substitution on their structure as well as their electrochemical and photophysical properties are also presented. The HOMO-LUMO gap was tuned by the N^N ligand; the largest redshift in the metal-to-ligand charge transfer (MLCT) band was for [Cu(P^P){5,5'-(CF3 )2 bpy}][PF6 ]. In solution, the compounds are weak yellow to red emitters. The emission properties depend on the substitution pattern, but this cannot be explained by simple electronic arguments. Among powders, [Cu(xantphos){4,4'-(CF3 )2 bpy}][PF6 ] has the highest photoluminescence quantum yield (PLQY; 50.3 %) with an emission lifetime of 12 µs. Compared to 298 K solution behavior, excited-state lifetimes became longer in frozen Me-THF (77 K; THF=tetrahydrofuran), thus indicating thermally activated delayed fluorescence (TADF). Time-dependent (TD)-DFT calculations show that the energy gap between the lowest-energy singlet and triplet excited states (0.12-0.20 eV) permits TADF. Light-emitting electrochemical cells (LECs) with [Cu(POP)+(6-CF3 bpy)][PF6 ], [Cu(xantphos)(6-CF3 bpy)][PF6 ], or [Cu(xantphos){6,6'-Me2 -4,4'-(CF3 )2 bpy}][PF6 ] emit yellow electroluminescence. The LEC with [Cu(xantphos){6,6'-Me2 -4,4'-(CF3 )2 bpy}][PF6 ] had the fastest turn-on time (8 min), and the LEC with the longest lifetime (t1/2 =31 h) contained [Cu(xantphos)(6-CF3 bpy)][PF6 ]; these LECs reached maximum luminances of 131 and 109 cd m-2 , respectively.

5.
Chempluschem ; 83(4): 143, 2018 Apr.
Article in English | MEDLINE | ID: mdl-31957289

ABSTRACT

Invited for this month's cover are the research groups of Professors Catherine Housecroft and Edwin Constable from the University of Basel, Switzerland and Professor Enrique Ortí and Dr. Henk Bolink from the University of Valencia, Spain. These groups have a longstanding collaboration to investigate molecular electronic devices, in particular light-emitting electrochemical cells (LECs) and organic light-emitting diodes (OLEDs). The featured article highlights the development of LECs with copper(I)-based emitters for devices consisting of Earth-abundant materials. Read the full text of the article at 10.1002/cplu.201700501.

6.
RSC Adv ; 8(62): 35719-35723, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-35547926

ABSTRACT

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W-1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

7.
ChemSusChem ; 10(19): 3788-3793, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28869336

ABSTRACT

One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter.


Subject(s)
Calcium Compounds/chemistry , Luminescence , Oxides/chemistry , Phosphines/chemistry , Semiconductors , Titanium/chemistry
8.
Chem Commun (Camb) ; 53(62): 8707-8710, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28722068

ABSTRACT

Quasi-2D perovskites with the BA : MA molar ratio equal to 3 : 3 show a remarkable PLQY exceeding 80%, thanks to the use of an electron donor as the passivating agent. These films have been applied in LEDs that exhibit high brightness exceeding 1000 cd m-2 and current efficiencies >3 cd A-1.

9.
J Am Chem Soc ; 139(8): 3237-3248, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28157309

ABSTRACT

The synthesis and characterization of a series of new cyclometalated iridium(III) complexes [Ir(ppy)2(N∧N)][PF6] in which Hppy = 2-phenylpyridine and N∧N is (pyridin-2-yl)benzo[d]thiazole (L1), 2-(4-(tert-butyl)pyridin-2-yl)benzo[d]thiazole (L2), 2-(6-phenylpyridin-2-yl)benzo[d]thiazole (L3), 2-(4-(tert-butyl)-6-phenylpyridin-2-yl)benzo[d]thiazole (L4), 2,6-bis(benzo[d]thiazol-2-yl)pyridine (L5), 2-(pyridin-2-yl)benzo[d]oxazole (L6), or 2,2'-dibenzo[d]thiazole (L7) are reported. The single crystal structures of [Ir(ppy)2(L1)][PF6]·1.5CH2Cl2, [Ir(ppy)2(L6)][PF6]·CH2Cl2, and [Ir(ppy)2(L7)][PF6] have been determined. The new complexes are efficient red emitters and have been used in the active layers in light-emitting electrochemical cells (LECs). The effects of modifications of the 2-(pyridin-2-yl)benzo[d]thiazole ligand on the photoluminescence and LEC performance have been examined. Extremely stable red-emitting LECs are obtained, and when [Ir(ppy)2(L1)][PF6], [Ir(ppy)2(L2)][PF6], or [Ir(ppy)2(L3)][PF6] are used in the active layer, device lifetimes greater than 1000, 6000, and 4000 h, respectively, are observed.

10.
Chem Commun (Camb) ; 52(76): 11351-11354, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27709202

ABSTRACT

Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices.

11.
Inorg Chem ; 54(6): 3031-42, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25741900

ABSTRACT

A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 µs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...