Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398083

ABSTRACT

Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.

2.
Sci Rep ; 13(1): 21062, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030647

ABSTRACT

Microclimate is a complex non-linear phenomenon influenced by both global and local processes. Its understanding holds a pivotal role in the management of natural resources and the optimization of agricultural procedures. This phenomenon can be effectively monitored in local areas by employing models that integrate physical laws and data-driven algorithms relying on climate data and terrain conformation. Climate data can be acquired from nearby meteorological stations when available, but in their absence, global climate datasets describing 10 km-scale areas are often utilized. The present research introduces an innovative microclimate model that combines physical laws and deep learning to reproduce temperature and relative humidity variations at the meter-scale within a study area located in the Lombardian foothills. The model is exploited to perform a comparative study investigating whether employing the global climate dataset ERA5 as input reduces model's accuracy in reproducing the microclimate variations compared to using data collected by the Lombardy Regional Environment Protection Agency (ARPA) from a nearby meteorological station. The comparative analysis shows that using local meteorological data as inputs provides more accurate results for microclimate modeling. However, in situations where local data is not available, the use of global climate data remains a viable and reliable approach.

3.
Phys Biol ; 20(5)2023 07 03.
Article in English | MEDLINE | ID: mdl-37348493

ABSTRACT

Recent years have seen a tremendous growth of interest in understanding the role that the adaptive immune system could play in interdicting tumor progression. In this context, it has been shown that the density of adaptive immune cells inside a solid tumor serves as a favorable prognostic marker across different types of cancer. The exact mechanisms underlying the degree of immune cell infiltration is largely unknown. Here, we quantify the temporal dynamics of the density profile of activated immune cells around a solid tumor spheroid. We propose a computational model incorporating immune cells with active, persistent movement and a proliferation rate that depends on the presence of cancer cells, and show that the model able to reproduce semi-quantitatively the experimentally measured infiltration profile. Studying the density distribution of immune cells inside a solid tumor can help us better understand immune trafficking in the tumor micro-environment, hopefully leading towards novel immunotherapeutic strategies.


Subject(s)
Spheroids, Cellular , Tumor Microenvironment , Cell Line, Tumor
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047393

ABSTRACT

It would be highly desirable to find prognostic and predictive markers for triple-negative breast cancer (TNBC), a strongly heterogeneous and invasive breast cancer subtype often characterized by a high recurrence rate and a poor outcome. Here, we investigated the prognostic and predictive capabilities of ARIADNE, a recently developed transcriptomic test focusing on the epithelial-mesenchymal transition. We first compared the stratification of TNBC patients obtained by ARIADNE with that based on other common pathological indicators, such as grade, stage and nodal status, and found that ARIADNE was more effective than the other methods in dividing patients into groups with different disease-free survival statistics. Next, we considered the response to neoadjuvant chemotherapy and found that the classification provided by ARIADNE led to statistically significant differences in the rates of pathological complete response within the groups.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoadjuvant Therapy/methods , Epithelial-Mesenchymal Transition/genetics , Disease-Free Survival , Gene Expression Profiling , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
iScience ; 26(1): 105868, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36624837

ABSTRACT

The metabolic activity of all the micro-organism composing the human microbiome interacts with the host metabolism contributing to human health and disease in a way that is not fully understood. Here, we introduce STELLA, a computational method to derive the spectrum of metabolites associated with the microbiome of an individual. STELLA integrates known information on metabolic pathways associated with each bacterial species and extracts from these the list of metabolic products of each singular reaction by means of automatic text analysis. By comparing the result obtained on a single subject with the metabolic profile data of a control set of healthy subjects, we are able to identify individual metabolic alterations. To illustrate the method, we present applications to autism spectrum disorder and multiple sclerosis.

6.
Cells Tissues Organs ; 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509081

ABSTRACT

Tumor plasticity is an emerging property of tumor cells which allows them to change their phenotype in dependence on the environment. The epithelial-mesenchymal transition plays a crucial role in helping cells to acquire a more aggressive phenotype when they are in the mesenchymal state. Herein we investigated the biophysical changes occurring during phenotypic switching in human melanoma cells considering the blebbines of the nuclei, their stiffness and the involvement of polycombs with lamins. We show that the formation of cellular heterogeneity involves many crucial nuclear changes including the interaction between different types of polycombs with lamins and chromosome accessibility. All together our results shed new light on the molecular mechanisms involved in the formation of an heterogeneous cell population during phenotypic switching. In particular, our results show that phenotypic switching in melanoma involves chromatin remodeling changing the transcriptional activity of cells and consequently their phenotype.

7.
Heliyon ; 8(12): e12435, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582716

ABSTRACT

Time-dependent geolocalized analysis of pollution data allows to better understand their dynamics over time and could suggest strategies to restore a good ecological status of contaminated area. This research analyzes concentrations of pollutants in surface waters and groundwater monitored by the Regional Environment Protection Agency of Lombardy from 2017 to 2020. Lombardy is one of the richest and populous region of Europe, providing an interesting example of the impact of environmental pollutants due to anthropogenic and industrial activities, not only for Italy but also for all Europe. Results show that groundwater displays more sites with heavy metals above the legal limit with respect to surface waters, including As, Ni, Cr and Zn. Furthermore, the spatio-temporal analysis of the data clearly shows that the introduction of more restrictive laws is a proper policy to improve the ecological status of the water.

8.
Sci Rep ; 12(1): 9651, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688895

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancers and differs from other invasive breast cancer types because it grows and spreads rapidly, it has limited treatment options and typically worse prognosis. Since TNBC does not express estrogen or progesterone receptors and little or no human epidermal growth factor receptor (HER2) proteins are present, hormone therapy and drugs targeting HER2 are not helpful, leaving chemotherapy only as the main systemic treatment option. In this context, it would be important to find molecular signatures able to stratify patients into high and low risk groups. This would allow oncologists to suggest the best therapeutic strategy in a personalized way, avoiding unnecessary toxicity and reducing the high costs of treatment. Here we compare two independent patient stratification strategies for TNBC based on gene expression data: The first is focusing on the epithelial mesenchymal transition (EMT) and the second on the tumor immune microenvironment. Our results show that the two stratification strategies are not directly related, suggesting that the aggressiveness of the tumor can be due to a multitude of unrelated factors. In particular, the EMT stratification is able to identify a high-risk population with high immune markers that is, however, not properly classified by the tumor immune microenvironment based strategy.


Subject(s)
Triple Negative Breast Neoplasms , Epithelial-Mesenchymal Transition/genetics , Humans , Prognosis , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics
9.
Comput Struct Biotechnol J ; 20: 733-744, 2022.
Article in English | MEDLINE | ID: mdl-35096288

ABSTRACT

OBJECTIVES: Despite extensive efforts to monitor the diffusion of COVID-19, the actual wave of infection is worldwide characterized by the presence of emerging SARS-CoV-2 variants. The present study aims to describe the presence of yet undiscovered SARS-CoV-2 variants in Italy. METHODS: Next Generation Sequencing was performed on 16 respiratory samples from occasionally employed within the Bangladeshi community present in Ostia and Fiumicino towns. Computational strategy was used to identify all potential epitopes for reference and mutated Spike proteins. A simulation of proteasome activity and the identification of possible cleavage sites along the protein guided to a combined score involving binding affinity, peptide stability and T-cell propensity. RESULTS: Retrospective sequencing analysis revealed a double Spike D614G/S939F mutation in COVID-19 positive subjects present in Ostia while D614G mutation was evidenced in those based in Fiumicino. Unlike D614G, S939F mutation affects immune response by the slight but significant modulation of T-cell propensity and the selective enrichment of potential binding epitopes for some HLA alleles. CONCLUSION: Collectively, our findings mirror further the importance of deep sequencing of SARS-CoV-2 genome as a unique approach to monitor the appearance of specific mutations as for those herein reported for Spike protein. This might have implications on both the type of immune response triggered by the viral infection and the severity of the related illness.

10.
Front Digit Health ; 3: 704411, 2021.
Article in English | MEDLINE | ID: mdl-34713175

ABSTRACT

The spread of the current Sars-Cov-2 pandemics leads to the development of mutations that are constantly monitored because they could affect the efficacy of vaccines. Three recently identified mutated strains, known as variants of concern, are rapidly spreading worldwide. Here, we study possible effects of these mutations on the immune response to Sars-Cov-2 infection using NetTepi a computational method based on artificial neural networks that considers binding and stability of peptides obtained by proteasome degradation for widely represented HLA class I alleles present in human populations as well as the T-cell propensity of viral peptides that measures their immune response. Our results show variations in the number of potential highly ranked peptides ranging between 0 and 20% depending on the specific HLA allele. The results can be useful to design more specific vaccines.

11.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445066

ABSTRACT

Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline-a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc-a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole-two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.


Subject(s)
Calcium/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Melanoma/metabolism , TRPM Cation Channels/metabolism , Cell Line, Tumor , Humans , Oxidation-Reduction
12.
Sci Rep ; 11(1): 13888, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230554

ABSTRACT

Quantifying synergistic environmental effects in water contamination is still an open issue. Here, we have analyzed geolocalized data of pollutants recorded in 2018 in surface and groundwater of Lombardy, one of the areas with the highest agricultural production rates, not only in Italy, but also in Europe. Both herbicides and insecticides are present at concentration levels above the legal limit, mainly in surface waters. Geolocalized analysis allows us to identify interesting areas particularly affected by a combination of multiple pesticides. We thus investigated possible synergistic effects of these compounds on the environment, using the alga C. reinhardtii as a biosensor. Our results show that exposure for 7 days to four compounds, that we found present together at high concentration in surface waters, was able to induce a stress in the algae, as indicated by the presence of palmelloids. Our work results in a pipeline that could easily be exported to monitor other territories in Italy and abroad.

13.
J R Soc Interface ; 18(180): 20210211, 2021 07.
Article in English | MEDLINE | ID: mdl-34314652

ABSTRACT

The ability of bats to coexist with viruses without being harmed is an interesting issue that is still under investigation. Here we use a mathematical model to show that the pattern of body temperature variations observed in bats between day and night is responsible for their ability to keep viruses in check. From the dynamical systems point of view, our model displays an intriguing quasi-periodic behaviour that might be relevant in making the system robust by avoiding viral escape due to perturbations in the body temperature cycle.


Subject(s)
Chiroptera , Virus Diseases , Viruses , Animals , Body Temperature , Immunity , Virus Diseases/veterinary
14.
Cell Syst ; 12(5): 457-462.e4, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33961788

ABSTRACT

Predicting the metastasis risk in patients with a primary breast cancer tumor is of fundamental importance to decide the best therapeutic strategy in the framework of personalized medicine. Here, we present ARIADNE, a general algorithmic strategy to assess the risk of metastasis from transcriptomic data of patients with triple-negative breast cancer, a subtype of breast cancer with poorer prognosis with respect to the other subtypes. ARIADNE identifies hybrid epithelial/mesenchymal phenotypes by mapping gene expression data into the states of a Boolean network model of the epithelial-mesenchymal pathway. Using this mapping, it is possible to stratify patients according to their prognosis, as we show by validating the strategy with three independent cohorts of triple-negative breast cancer patients. Our strategy provides a prognostic tool that could be applied to other biologically relevant pathways, in order to estimate the metastatic risk for other breast cancer subtypes or other tumor types. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Triple Negative Breast Neoplasms , Epithelial-Mesenchymal Transition/genetics , Humans , Peer Review , Triple Negative Breast Neoplasms/genetics
15.
Front Netw Physiol ; 1: 746118, 2021.
Article in English | MEDLINE | ID: mdl-36925574

ABSTRACT

High-density electroencephalography (hd-EEG) provides an accessible indirect method to record spatio-temporal brain activity with potential for disease diagnosis and monitoring. Due to their highly multidimensional nature, extracting useful information from hd-EEG recordings is a complex task. Network representations have been shown to provide an intuitive picture of the spatial connectivity underlying an electroencephalogram recording, although some information is lost in the projection. Here, we propose a method to construct multilayer network representations of hd-EEG recordings that maximize their information content and test it on sleep data recorded in individuals with mental health issues. We perform a series of statistical measurements on the multilayer networks obtained from patients and control subjects and detect significant differences between the groups in clustering coefficient, betwenness centrality, average shortest path length and parieto occipital edge presence. In particular, patients with a mood disorder display a increased edge presence in the parieto-occipital region with respect to healthy control subjects, indicating a highly correlated electrical activity in that region of the brain. We also show that multilayer networks at constant edge density perform better, since most network properties are correlated with the edge density itself which can act as a confounding factor. Our results show that it is possible to stratify patients through statistical measurements on a multilayer network representation of hd-EEG recordings. The analysis reveals that individuals with mental health issues display strongly correlated signals in the parieto-occipital region. Our methodology could be useful as a visualization and analysis tool for hd-EEG recordings in a variety of pathological conditions.

16.
Cell Syst ; 11(4): 412-417.e2, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32916095

ABSTRACT

Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Betacoronavirus/immunology , Histocompatibility Antigens Class I/immunology , Neural Networks, Computer , Peptides/immunology , Polymorphism, Genetic , Viral Proteins/immunology , Haplotypes , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Peptides/chemistry , Protein Binding , SARS-CoV-2 , Viral Proteins/chemistry
17.
Nat Cell Biol ; 22(9): 1103-1115, 2020 09.
Article in English | MEDLINE | ID: mdl-32839548

ABSTRACT

Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.


Subject(s)
Breast Neoplasms/pathology , Cell Adhesion/physiology , Neoplasm Invasiveness/pathology , Adherens Junctions/pathology , Animals , Cell Line , Cell Line, Tumor , Down-Regulation/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Intercellular Junctions/pathology , MCF-7 Cells , Mice, Inbred BALB C
18.
J R Soc Interface ; 17(168): 20200217, 2020 07.
Article in English | MEDLINE | ID: mdl-32603650

ABSTRACT

Some species have a longer lifespan than others, but usually lifespan is correlated with typical body weight. Here, we study the lifetime evolution of the metabolic behaviour of Nothobranchius furzeri, a killifish with an extremely short lifespan with respect to other fishes, even when taking into account rescaling by body weight. Comparison of the gene expression patterns of N. furzeri with those of zebrafish Danio rerio and mouse (Mus musculus) shows that a broad set of metabolic genes and pathways are affected in N. furzeri during ageing in a way that is consistent with a global deregulation of chromatin. Computational analysis of the glycolysis pathway for the three species highlights a rapid increase in the metabolic activity during the lifetime of N. furzeri with respect to the other species. Our results highlight that the unusually short lifespan of N. furzeri is associated with peculiar patterns in the metabolic activities and in chromatin dynamics.


Subject(s)
Cyprinodontiformes , Transcriptome , Aging , Animals , Cyprinodontiformes/genetics , Longevity/genetics , Mice , Zebrafish/genetics
19.
Soft Matter ; 16(23): 5478-5486, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32490505

ABSTRACT

Active particle assemblies can exhibit a wide range of interesting dynamical phases depending on internal parameters such as density, adhesion strength or self-propulsion. Active self-rotations are rarely studied in this context, although they can be relevant for active matter systems, as we illustrate by analyzing the motion of Chlamydomonas reinhardtii algae under different experimental conditions. Inspired by this example, we simulate the dynamics of a system of interacting active disks endowed with active torques and self-propulsive forces. At low packing fractions, adhesion causes the formation of small rotating clusters, resembling those observed when algae are stressed. At higher densities, the model shows a jamming to unjamming transition promoted by active torques and hindered by adhesion. We also study the interplay between self-propulsion and self-rotation and derive a phase diagram. Our results yield a comprehensive picture of the dynamics of active rotators, providing useful guidance to interpret experimental results in cellular systems where rotations might play a role.


Subject(s)
Chlamydomonas reinhardtii/physiology , Models, Biological , Motion , Computer Simulation
20.
NPJ Syst Biol Appl ; 6(1): 19, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533003

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...