Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Plant ; 54(3): 240-252, 2018.
Article in English | MEDLINE | ID: mdl-29780216

ABSTRACT

Constitutive expression of the Zea mays L. (maize) morphogenic transcription factors Baby Boom (Bbm) and Wuschel2 (Wus2) in maize can not only greatly increase transformation efficiency but can also induce phenotypic abnormalities and sterility. In an effort to alleviate the pleiotropic effects of constitutive expression, a genome wide search was undertaken to find suitable maize promoters to drive tissue and timing-specific expression of the transformation enhancing genes Bbm and Wus2. A promoter from a maize phospholipid transferase protein gene (Zm-PLTPpro ) was identified based on its expression in leaves, embryos, and callus while being downregulated in roots, meristems, and reproductive tissues. When Zm-PLTPpro driving Bbm was transformed into immature maize embryos along with a Wus2 expression cassette driven by the nopaline synthase promoter (Nospro ::Wus2) abundant somatic embryos rapidly formed on the scutella. These embryos were individual and uniformly transformed and could be directly germinated into plants without a callus phase. Transformed plants could be sent to the greenhouse in as little as 1 mo and regenerated plants matched the seed-derived phenotype for the inbred and were fertile. However, T1 seed from these plants had poor germination. Replacing Nospro with a maize auxin-inducible promoter (Zm-Axig1pro ) in combination with Zm-PLTPpro ::Bbm, allowed healthy, fertile plants to be regenerated. Single-copy T1 seed germinated normally and had a predominantly wild-type inbred phenotype. For maize, this callus-free transformation process has worked in all inbred lines tested.

2.
Mol Microbiol ; 72(6): 1316-33, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19460100

ABSTRACT

Alternaria brassicicola is an important, necrotrophic fungal pathogen that causes black spot disease on Brassicas. In order to study pathogenicity mechanisms, gene deletion mutants were generated for 21 putative regulatory genes including kinases and transcription factors subjectively selected from the annotated A. brassicicola genome. Except for Ste12, the deletion of the SNF1 kinase, XlnR, and CreA homologues that control cell wall-degrading enzyme production did not significantly affect virulence in contrast to other pathogenic fungi. Only deletion of XlnR but not CreA, Ste12 or SNF1 impaired the fungus' ability to utilize sole carbon sources suggesting Alternaria regulates expression of cell wall-degrading enzymes in a novel manner. In addition, two novel virulence factors encoding a transcription factor (AbPro1) and a two-component histidine kinase gene (AbNIK1) were discovered. Deletion of AbPro1 resulted in a 70% reduction in virulence and a 25% reduction in vegetative growth rates in vitro. Deletion of AbNIK1 resulted in a near complete loss of virulence, increased sensitivity to osmotic stress, and no changes in vegetative growth rates in vitro. Interestingly, addition of long polypeptides to spores of both Deltaabste12 and Deltaabnik1 during inoculations resulted in a complete restoration of pathogenicity through a yet to be defined mechanism.


Subject(s)
Alternaria/genetics , Fungal Proteins/metabolism , Signal Transduction , Virulence Factors/metabolism , Alternaria/metabolism , Alternaria/pathogenicity , Fungal Proteins/genetics , Genetic Complementation Test , Histidine Kinase , Mutagenesis , Plant Diseases/microbiology , Protein Kinases/genetics , Protein Kinases/metabolism , Sequence Deletion , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence Factors/genetics
3.
Mol Plant Pathol ; 8(1): 23-39, 2007 Jan.
Article in English | MEDLINE | ID: mdl-20507476

ABSTRACT

SUMMARY Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other micro-organisms. However, many of the functions of NPS genes and their products are largely unknown. In this study, we investigated the function of one of the A. brassicicola NPS genes, AbNPS2. The predicted amino acid sequence of AbNPS2 showed high sequence similarity with A. brassicae, AbrePsy1, Cochliobolus heterostrophus, NPS4 and a Stagonospora nodorum NPS. The AbNPS2 open reading frame was predicted to be 22 kb in length and encodes a large protein (7195 amino acids) showing typical NPS modular organization. Gene expression analysis of AbNPS2 in wild-type fungus indicated that it is expressed almost exclusively in conidia and conidiophores, broadly in the reproductive developmental phase. AbNPS2 gene disruption mutants showed abnormal spore cell wall morphology and a decreased hydrophobicity phenotype. Conidia of abnps2 mutants displayed an aberrantly inflated cell wall and an increase in lipid bodies compared with wild-type. Further phenotypic analyses of abnps2 mutants showed decreased spore germination rates both in vitro and in vivo, and a marked reduction in sporulation in vivo compared with wild-type fungus. Moreover, virulence tests on Brassicas with abnps2 mutants revealed a significant reduction in lesion size compared with wild-type but only when aged spores were used in experiments. Collectively, these results indicate that AbNPS2 plays an important role in development and virulence.

4.
BMC Genomics ; 6: 23, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15720707

ABSTRACT

BACKGROUND: Earlier comparative maps between the genomes of rice (Oryza sativa L.), barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) were linkage maps based on cDNA-RFLP markers. The low number of polymorphic RFLP markers has limited the development of dense genetic maps in wheat and the number of available anchor points in comparative maps. Higher density comparative maps using PCR-based anchor markers are necessary to better estimate the conservation of colinearity among cereal genomes. The purposes of this study were to characterize the proportion of transcribed DNA sequences containing simple sequence repeats (SSR or microsatellites) by length and motif for wheat, barley and rice and to determine in-silico rice genome locations for primer sets developed for wheat and barley Expressed Sequence Tags. RESULTS: The proportions of SSR types (di-, tri-, tetra-, and penta-nucleotide repeats) and motifs varied with the length of the SSRs within and among the three species, with trinucleotide SSRs being the most frequent. Distributions of genomic microsatellites (gSSRs), EST-derived microsatellites (EST-SSRs), and transcribed regions in the contiguous sequence of rice chromosome 1 were highly correlated. More than 13,000 primer pairs were developed for use by the cereal research community as potential markers in wheat, barley and rice. CONCLUSION: Trinucleotide SSRs were the most common type in each of the species; however, the relative proportions of SSR types and motifs differed among rice, wheat, and barley. Genomic microsatellites were found to be primarily located in gene-rich regions of the rice genome. Microsatellite markers derived from the use of non-redundant EST-SSRs are an economic and efficient alternative to RFLP for comparative mapping in cereals.


Subject(s)
Expressed Sequence Tags , Genes, Plant , Hordeum/genetics , Microsatellite Repeats , Oryza/genetics , Triticum/genetics , Amino Acid Motifs , Chromosome Mapping , Chromosomes, Plant , DNA Primers/chemistry , Genetic Linkage , Genetic Markers , Genome, Plant , Models, Genetic , Models, Statistical , Nucleotides/genetics , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Regression Analysis , Transcription, Genetic
5.
Funct Integr Genomics ; 4(1): 34-46, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14740255

ABSTRACT

The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to related large-genome species has revolutionized molecular genetics and breeding strategies for improving those crops. Comparative sequence analysis methods can be used to cross-reference genes between species maps, enhance the resolution of comparative maps, study patterns of gene evolution, identify conserved regions of the genomes, and facilitate interspecies gene cloning. In this study, 5,780 Triticeae ESTs that have been physically mapped using wheat ( Triticum aestivum L.) deletion lines and segregating populations were compared using NCBI BLASTN to the first draft of the public rice ( Oryza sativa L.) genome sequence data from 3,280 ordered BAC/PAC clones. A rice genome view of the homoeologous wheat genome locations based on sequence analysis shows general similarity to the previously published comparative maps based on Southern analysis of RFLP. For most rice chromosomes there is a preponderance of wheat genes from one or two wheat chromosomes. The physical locations of non-conserved regions were not consistent across rice chromosomes. Some wheat ESTs with multiple wheat genome locations are associated with the non-conserved regions of similarity between rice and wheat. The inverse view, showing the relationship between the wheat deletion map and rice genomic sequence, revealed the breakdown of gene content and order at the resolution conferred by the physical chromosome deletions in the wheat genome. An average of 35% of the putative single copy genes that were mapped to the most conserved bins matched rice chromosomes other than the one that was most similar. This suggests that there has been an abundance of rearrangements, insertions, deletions, and duplications eroding the wheat-rice genome relationship that may complicate the use of rice as a model for cross-species transfer of information in non-conserved regions.


Subject(s)
Computational Biology , Expressed Sequence Tags , Genome, Plant , Oryza/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Sequence Analysis, DNA
6.
Proc Natl Acad Sci U S A ; 100(19): 10836-41, 2003 Sep 16.
Article in English | MEDLINE | ID: mdl-12960374

ABSTRACT

Loci detected by Southern blot hybridization of 3,977 expressed sequence tag unigenes were mapped into 159 chromosome bins delineated by breakpoints of a series of overlapping deletions. These data were used to assess synteny levels along homoeologous chromosomes of the wheat A, B, and D genomes, in relation to both bin position on the centromere-telomere axis and the gradient of recombination rates along chromosome arms. Synteny level decreased with the distance of a chromosome region from the centromere. It also decreased with an increase in recombination rates along the average chromosome arm. There were twice as many unique loci in the B genome than in the A and D genomes, and synteny levels between the B genome chromosomes and the A and D genome homoeologues were lower than those between the A and D genome homoeologues. These differences among the wheat genomes were attributed to differences in the mating systems of wheat diploid ancestors. Synteny perturbations were characterized in 31 paralogous sets of loci with perturbed synteny. Both insertions and deletions of loci were detected and both preferentially occurred in high recombination regions of chromosomes.


Subject(s)
Chromosomes, Plant , Gene Deletion , Gene Duplication , Recombination, Genetic , Triticum/genetics
7.
Genome Res ; 13(8): 1818-27, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12902377

ABSTRACT

The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence data from 2251 ordered BAC/PAC clones using BLAST. A rice genome view of homologous wheat genome locations based on comparative sequence analysis revealed numerous chromosomal rearrangements that will significantly complicate the use of rice as a model for cross-species transfer of information in nonconserved regions.


Subject(s)
DNA, Plant/analysis , Genome, Plant , Oryza/genetics , Sequence Analysis, DNA/methods , Triticum/genetics , Chromosome Mapping , Databases, Genetic , Expressed Sequence Tags , Gene Order/genetics , Genes, Plant/genetics , Poaceae/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid
8.
Genome Res ; 13(5): 753-63, 2003 May.
Article in English | MEDLINE | ID: mdl-12695326

ABSTRACT

Genes detected by wheat expressed sequence tags (ESTs) were mapped into chromosome bins delineated by breakpoints of 159 overlapping deletions. These data were used to assess the organizational and evolutionary aspects of wheat genomes. Relative gene density and recombination rate increased with the relative distance of a bin from the centromere. Single-gene loci present once in the wheat genomes were found predominantly in the proximal, low-recombination regions, while multigene loci tended to be more frequent in distal, high-recombination regions. One-quarter of all gene motifs within wheat genomes were represented by two or more duplicated loci (paralogous sets). For 40 such sets, ancestral loci and loci derived from them by duplication were identified. Loci derived by duplication were most frequently located in distal, high-recombination chromosome regions whereas ancestral loci were most frequently located proximal to them. It is suggested that recombination has played a central role in the evolution of wheat genome structure and that gradients of recombination rates along chromosome arms promote more rapid rates of genome evolution in distal, high-recombination regions than in proximal, low-recombination regions.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Genome, Plant , Recombination, Genetic/genetics , Triticum/genetics , Chromosome Mapping/methods , Chromosome Mapping/statistics & numerical data , Genes, Duplicate/genetics , Genes, Plant/genetics , Genetic Markers/genetics , Multigene Family/genetics , Oryza/genetics , Sequence Homology, Nucleic Acid
9.
Plant Mol Biol ; 48(5-6): 501-10, 2002.
Article in English | MEDLINE | ID: mdl-11999831

ABSTRACT

Plant genomics projects involving model species and many agriculturally important crops are resulting in a rapidly increasing database of genomic and expressed DNA sequences. The publicly available collection of expressed sequence tags (ESTs) from several grass species can be used in the analysis of both structural and functional relationships in these genomes. We analyzed over 260000 EST sequences from five different cereals for their potential use in developing simple sequence repeat (SSR) markers. The frequency of SSR-containing ESTs (SSR-ESTs) in this collection varied from 1.5% for maize to 4.7% for rice. In addition, we identified several ESTs that are related to the SSR-ESTs by BLAST analysis. The SSR-ESTs and the related sequences were clustered within each species in order to reduce the redundancy and to produce a longer consensus sequence. The consensus and singleton sequences from each species were pooled and clustered to identify cross-species matches. Overall a reduction in the redundancy by 85% was observed when the resulting consensus and singleton sequences (3569) were compared to the total number of SSR-EST and related sequences analyzed (24 606). This information can be useful for the development of SSR markers that can amplify across the grass genera for comparative mapping and genetics. Functional analysis may reveal their role in plant metabolism and gene evolution.


Subject(s)
Expressed Sequence Tags , Microsatellite Repeats/genetics , Poaceae/genetics , Computational Biology , Databases, Factual , Genetic Markers , Hordeum/genetics , Oryza/genetics , Sequence Homology, Nucleic Acid , Triticum/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...