Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(9): 600, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684238

ABSTRACT

Intracellular Ca2+ signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca2+ is intracellular BAPTA (BAPTAi), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTAi enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL). This finding implied a novel interplay between intracellular Ca2+ signaling and anti-apoptotic BCL-2 function. Hence, we set out to identify the underlying mechanisms by which BAPTAi enhances cell death in B-cell cancers. In this study, we discovered that BAPTAi alone induced apoptosis in hematological cancer cell lines that were highly sensitive to S63845, an MCL-1 antagonist. BAPTAi provoked a rapid decline in MCL-1-protein levels by inhibiting mTORC1-driven Mcl-1 translation. These events were not a consequence of cell death, as BAX/BAK-deficient cancer cells exhibited similar downregulation of mTORC1 activity and MCL-1-protein levels. Next, we investigated how BAPTAi diminished mTORC1 activity and identified its ability to impair glycolysis by directly inhibiting 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) activity, a previously unknown effect of BAPTAi. Notably, these effects were also induced by a BAPTAi analog with low affinity for Ca2+. Consequently, our findings uncover PFKFB3 inhibition as an Ca2+-independent mechanism through which BAPTAi impairs cellular metabolism and ultimately compromises the survival of MCL-1-dependent cancer cells. These findings hold two important implications. Firstly, the direct inhibition of PFKFB3 emerges as a key regulator of mTORC1 activity and a promising target in MCL-1-dependent cancers. Secondly, cellular effects caused by BAPTAi are not necessarily related to Ca2+ signaling. Our data support the need for a reassessment of the role of Ca2+ in cellular processes when findings were based on the use of BAPTAi.


Subject(s)
Neoplasms , Phosphoric Monoester Hydrolases , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Egtazic Acid , Phosphofructokinase-2/genetics
2.
Cell Death Dis ; 14(7): 436, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454104

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease (PD), with growing importance also for Crohn's disease and cancer. LRRK2 is a large and complex protein possessing both GTPase and kinase activity. Moreover, LRRK2 activity and function can be influenced by its phosphorylation status. In this regard, many LRRK2 PD-associated mutants display decreased phosphorylation of the constitutive phosphorylation cluster S910/S935/S955/S973, but the role of these changes in phosphorylation status with respect to LRRK2 physiological functions remains unknown. Here, we propose that the S910/S935/S955/S973 phosphorylation sites act as key regulators of LRRK2-mediated autophagy under both basal and starvation conditions. We show that quadruple LRRK2 phosphomutant cells (4xSA; S910A/S935A/S955A/S973A) have impaired lysosomal functionality and fail to induce and proceed with autophagy during starvation. In contrast, treatment with the specific LRRK2 kinase inhibitors MLi-2 (100 nM) or PF-06447475 (150 nM), which also led to decreased LRRK2 phosphorylation of S910/S935/S955/S973, did not affect autophagy. In explanation, we demonstrate that the autophagy impairment due to the 4xSA LRRK2 phospho-dead mutant is driven by its enhanced LRRK2 kinase activity. We show mechanistically that this involves increased phosphorylation of LRRK2 downstream targets Rab8a and Rab10, as the autophagy impairment in 4xSA LRRK2 cells is counteracted by expression of phosphorylation-deficient mutants T72A Rab8a and T73A Rab10. Similarly, reduced autophagy and decreased LRRK2 phosphorylation at the constitutive sites were observed in cells expressing the pathological R1441C LRRK2 PD mutant, which also displays increased kinase activity. These data underscore the relation between LRRK2 phosphorylation at its constitutive sites and the importance of increased LRRK2 kinase activity in autophagy regulation and PD pathology.


Subject(s)
Autophagy , rab GTP-Binding Proteins , Phosphorylation/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Autophagy/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
J Cell Sci ; 136(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36583297

ABSTRACT

Anti-apoptotic B-cell lymphoma 2 (Bcl-2) regulates a wide array of cellular functions involved in cell death, cell survival and autophagy. Less known is its involvement in the differentiation of cardiomyocytes. As a consequence, mechanisms by which Bcl-2 contributes to cardiac differentiation remain to be elucidated. To address this, we used CRISPR/Cas9 to knockout (KO) BCL2 in human induced pluripotent stem cells (hiPSCs) and investigated the consequence of this KO for differentiation towards cardiomyocytes. Our results indicate that differentiation of hiPSCs to cardiomyocytes was delayed following BCL2 KO. This was not related to the canonical anti-apoptotic function of Bcl-2. This delay led to reduced expression and activity of the cardiomyocyte Ca2+ toolkit. Finally, Bcl-2 KO reduced c-Myc expression and nuclear localization in the early phase of the cardiac differentiation process, which accounts at least in part for the observed delay in the cardiac differentiation. These results suggest that there is a central role for Bcl-2 in cardiomyocyte differentiation and maturation.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cell Differentiation/genetics , Proto-Oncogene Proteins c-bcl-2/genetics
4.
Front Cell Dev Biol ; 10: 878311, 2022.
Article in English | MEDLINE | ID: mdl-36035984

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.

5.
Cell Death Differ ; 29(4): 788-805, 2022 04.
Article in English | MEDLINE | ID: mdl-34750538

ABSTRACT

Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.


Subject(s)
Apoptosis , Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors , bcl-X Protein , Calcium/metabolism , HeLa Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , bcl-X Protein/metabolism
7.
Cell Calcium ; 94: 102333, 2021 03.
Article in English | MEDLINE | ID: mdl-33450506

ABSTRACT

Anti-apoptotic Bcl-2 critically controls cell death by neutralizing pro-apoptotic Bcl-2-family members at the mitochondria. Bcl-2 proteins also act at the endoplasmic reticulum, the main intracellular Ca2+-storage organelle, where they inhibit IP3 receptors (IP3R) and prevent pro-apoptotic Ca2+-signaling events. IP3R channels are targeted by the BH4 domain of Bcl-2. Some cancer types rely on the IP3R-Bcl-2 interaction for survival. We previously developed a cell-permeable, BH4-domain-targeting peptide that can abrogate Bcl-2's inhibitory action on IP3Rs, named Bcl-2 IP3 receptor disrupter-2 (BIRD-2). This peptide kills several Bcl-2-dependent cancer cell types, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukaemia (CLL) cells, by eliciting intracellular Ca2+ signalling. However, the exact mechanisms by which these excessive Ca2+ signals triggered by BIRD-2 provoke cancer cell death remain elusive. Here, we demonstrate in DLBCL that although BIRD-2 activates caspase 3/7 and provokes cell death in a caspase-dependent manner, the cell death is independent of pro-apoptotic Bcl-2-family members, Bim, Bax and Bak. Instead, BIRD-2 provokes mitochondrial Ca2+ overload that is rapidly followed by opening of the mitochondrial permeability transition pore (mPTP). Inhibiting mitochondrial Ca2+ overload using Ru265, an inhibitor of the mitochondrial Ca2+ uniporter complex counteracts BIRD-2-induced cancer cell death. Finally, we validated our findings in primary CLL patient samples where BIRD-2 provoked mitochondrial Ca2+ overload and Ru265 counteracted BIRD-2-induced cell death. Overall, this work reveals the mechanisms by which BIRD-2 provokes cell death, which occurs via mitochondrial Ca2+ overload but acts independently of pro-apoptotic Bcl-2-family members.


Subject(s)
Calcium/metabolism , Lymphoma, B-Cell/pathology , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Peptides/chemistry , Peptides/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Bcl-2-Like Protein 11/metabolism , Calcium Signaling/drug effects , Calpain/metabolism , Caspases/metabolism , Cell Death/drug effects , Cell Line, Tumor , Enzyme Activation/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/metabolism , Mitochondria/drug effects , Protein Domains
8.
Cell Death Dis ; 11(9): 769, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943617

ABSTRACT

Several cancer cell types, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL) upregulate antiapoptotic Bcl-2 to cope with oncogenic stress. BH3 mimetics targeting Bcl-2's hydrophobic cleft have been developed, including venetoclax as a promising anticancer precision medicine for treating CLL patients. Recently, BDA-366 was identified as a small molecule BH4-domain antagonist that could kill lung cancer and multiple myeloma cells. BDA-366 was proposed to switch Bcl-2 from an antiapoptotic into a proapoptotic protein, thereby activating Bax and inducing apoptosis. Here, we scrutinized the therapeutic potential and mechanism of action of BDA-366 in CLL and DLBCL. Although BDA-366 displayed selective toxicity against both cell types, the BDA-366-induced cell death did not correlate with Bcl-2-protein levels and also occurred in the absence of Bcl-2. Moreover, although BDA-366 provoked Bax activation, it did neither directly activate Bax nor switch Bcl-2 into a Bax-activating protein in in vitro Bax/liposome assays. Instead, in primary CLL cells and DLBCL cell lines, BDA-366 inhibited the activity of the PI3K/AKT pathway, resulted in Bcl-2 dephosphorylation and reduced Mcl-1-protein levels without affecting the levels of Bcl-2 or Bcl-xL. Hence, our work challenges the current view that BDA-366 is a BH4-domain antagonist of Bcl-2 that turns Bcl-2 into a pro-apoptotic protein. Rather, our results indicate that other mechanisms beyond switching Bcl-2 conformation underlie BDA-366's cell-death properties that may implicate Mcl-1 downregulation and/or Bcl-2 dephosphorylation.


Subject(s)
Anthraquinones/pharmacology , Apoptosis , Ethanolamines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Calcium/metabolism , Cell Line, Tumor , Cytosol/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Drug Screening Assays, Antitumor , Humans , Liposomes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Phosphorylation , Protein Conformation , Protein Domains , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Signal Transduction , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
9.
Cells ; 9(10)2020 09 23.
Article in English | MEDLINE | ID: mdl-32977469

ABSTRACT

The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis/physiology , DNA-Binding Proteins/metabolism , Humans , Mitochondrial Membranes/metabolism
10.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811811

ABSTRACT

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Subject(s)
Cytoskeletal Proteins/metabolism , Muscle Contraction/physiology , Myosins/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Actins/physiology , Animals , Cell Differentiation/physiology , Cytoskeletal Proteins/physiology , Cytoskeleton/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscle, Smooth/physiology , Myosins/physiology
11.
Cell Rep ; 30(11): 3821-3836.e13, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187552

ABSTRACT

The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.


Subject(s)
Actomyosin/metabolism , Apolipoprotein L1/chemistry , Apolipoprotein L1/genetics , Apolipoproteins L/metabolism , Kidney Diseases/metabolism , Mutation/genetics , Amino Acid Sequence , Apolipoprotein L1/urine , Calcium/metabolism , Cell Line , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Humans , Kidney Diseases/urine , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Minor Histocompatibility Antigens/metabolism , Neuronal Calcium-Sensor Proteins/metabolism , Neuropeptides/metabolism , Phenotype , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Podocytes/drug effects , Podocytes/metabolism , Podocytes/ultrastructure , Poly I-C/pharmacology , Potassium Channels/metabolism , Protein Binding/drug effects , Protein Structure, Secondary
12.
Cell Death Differ ; 26(3): 531-547, 2019 03.
Article in English | MEDLINE | ID: mdl-29899382

ABSTRACT

Anti-apoptotic Bcl-2 proteins are upregulated in different cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL), enabling survival by inhibiting pro-apoptotic Bcl-2-family members and inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-mediated Ca2+-signaling. A peptide tool (Bcl-2/IP3R Disruptor-2; BIRD-2) was developed to abrogate the interaction of Bcl-2 with IP3Rs by targeting Bcl-2's BH4 domain. BIRD-2 triggers cell death in primary CLL cells and in DLBCL cell lines. Particularly, DLBCL cells with high levels of IP3R2 were sensitive to BIRD-2. Here, we report that BIRD-2-induced cell death in DLBCL cells does not only depend on high IP3R2-expression levels, but also on constitutive IP3 signaling, downstream of the tonically active B-cell receptor. The basal Ca2+ level in SU-DHL-4 DLBCL cells was significantly elevated due to the constitutive IP3 production. This constitutive IP3 signaling fulfilled a pro-survival role, since inhibition of phospholipase C (PLC) using U73122 (2.5 µM) caused cell death in SU-DHL-4 cells. Milder inhibition of IP3 signaling using a lower U73122 concentration (1 µM) or expression of an IP3 sponge suppressed both BIRD-2-induced Ca2+ elevation and apoptosis in SU-DHL-4 cells. Basal PLC/IP3 signaling also fulfilled a pro-survival role in other DLBCL cell lines, including Karpas 422, RI-1 and SU-DHL-6 cells, whereas PLC inhibition protected these cells against BIRD-2-evoked apoptosis. Finally, U73122 treatment also suppressed BIRD-2-induced cell death in primary CLL, both in unsupported systems and in co-cultures with CD40L-expressing fibroblasts. Thus, constitutive IP3 signaling in lymphoma and leukemia cells is not only important for cancer cell survival, but also represents a vulnerability, rendering cancer cells dependent on Bcl-2 to limit IP3R activity. BIRD-2 seems to switch constitutive IP3 signaling from pro-survival into pro-death, presenting a plausible therapeutic strategy.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Peptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Amino Acid Sequence , Apoptosis/drug effects , Calcium/metabolism , Cell Line, Tumor , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction/drug effects , Transfection
13.
Cell Death Discov ; 4: 101, 2018.
Article in English | MEDLINE | ID: mdl-30416758

ABSTRACT

The anti-apoptotic protein Bcl-2 is upregulated in several cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL). In a subset of these cancer cells, Bcl-2 blocks Ca2+-mediated apoptosis by suppressing the function of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) located at the endoplasmic reticulum (ER). A peptide tool, called Bcl-2/IP3 receptor disruptor-2 (BIRD-2), was developed to disrupt Bcl-2/IP3R complexes, triggering pro-apoptotic Ca2+ signals and killing Bcl-2-dependent cancer cells. In DLBCL cells, BIRD-2 sensitivity depended on the expression level of IP3R2 channels and constitutive IP3 signaling downstream of the B-cell receptor. However, other cellular pathways probably also contribute to BIRD-2-provoked cell death. Here, we examined whether BIRD-2-induced apoptosis depended on extracellular Ca2+ and more particularly on store-operated Ca2+ entry (SOCE), a Ca2+-influx pathway activated upon ER-store depletion. Excitingly, DPB162-AE, a SOCE inhibitor, suppressed BIRD-2-induced cell death in DLBCL cells. However, DPB162-AE not only inhibits SOCE but also depletes the ER Ca2+ store. Treatment of the cells with YM-58483 and GSK-7975A, two selective SOCE inhibitors, did not protect against BIRD-2-induced apoptosis. Similar data were obtained by knocking down STIM1 using small interfering RNA. Yet, extracellular Ca2+ contributed to BIRD-2 sensitivity in DLBCL, since the extracellular Ca2+ buffer ethylene glycol tetraacetic acid (EGTA) blunted BIRD-2-triggered apoptosis. The protective effects observed with DPB162-AE are likely due to ER Ca2+-store depletion, since a similar protective effect could be obtained using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. Thus, both the ER Ca2+-store content and extracellular Ca2+, but not SOCE, are critical factors underlying BIRD-2-provoked cell death.

14.
Oxid Med Cell Longev ; 2018: 2615372, 2018.
Article in English | MEDLINE | ID: mdl-30140363

ABSTRACT

Sarcopenia is the age-related loss of skeletal muscle mass, strength, and function. It is associated with regenerative difficulties by satellite cells, adult muscle stem cells, and alteration of oxidative management, mainly the increase in superoxide anions (O2•-). We aimed to investigate the relation between regenerative deficit in elderly and increase in O2•- production along with mitochondrial alterations. Myoblasts and myotubes from skeletal muscle of young and elderly healthy subjects (27.8 ± 6 and 72.4 ± 6.5 years old) were measured: (1) superoxide dismutase activity and protein content, (2) mitochondrial O2•- production levels, (3) O2•- production variability, and (4) mitochondrial bioenergetic profile. Compared to young myoblasts, elderly myoblasts displayed decreased SOD2 protein expression, elevated mitochondrial O2•- baseline levels, and decreased oxidative phosphorylation and glycolysis. Additionally, elderly versus young myotubes showed elevated mitochondrial O2•- levels when stressed with N-acetyl cysteine or high glucose and higher glycolysis despite showing comparable oxidative phosphorylation levels. Altogether, the elderly may have less metabolic plasticity due to the impaired mitochondrial function caused by O2•-. However, the increased energy demand related to the differentiation process appears to activate compensatory mechanisms for the partial mitochondrial dysfunction.


Subject(s)
Biopsy/methods , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Superoxides/metabolism , Adult , Aged , Cell Differentiation , Cells, Cultured , Female , Humans , Male , Myoblasts/pathology
15.
FEBS J ; 285(1): 127-145, 2018 01.
Article in English | MEDLINE | ID: mdl-29131545

ABSTRACT

B-cell lymphoma 2 (Bcl-2) protein is the archetype apoptosis suppressor protein. The N-terminal Bcl-2-homology 4 (BH4) domain of Bcl-2 is required for the antiapoptotic function of this protein at the mitochondria and endoplasmic reticulum (ER). The involvement of the BH4 domain in Bcl-2's antiapoptotic functions has been proposed based on Gly-based substitutions of the Ile14/Val15 amino acids, two hydrophobic residues located in the center of Bcl-2's BH4 domain. Following this strategy, we recently showed that a BH4-domain-derived peptide in which Ile14 and Val15 have been replaced by Gly residues, was unable to dampen proapoptotic Ca2+ -release events from the ER. Here, we investigated the impact of these mutations on the overall structure, stability, and function of full-length Bcl-2 as a regulator of Ca2+ signaling and cell death. Our results indicate that full-length Bcl-2 Ile14Gly/Val15Gly, in contrast to wild-type Bcl-2, (a) displayed severely reduced structural stability and a shortened protein half-life; (b) failed to interact with Bcl-2-associated X protein (BAX), to inhibit the inositol 1,4,5-trisphosphate receptor (IP3 R) and to protect against Ca2+ -mediated apoptosis. We conclude that the hydrophobic face of Bcl-2's BH4 domain (Ile14, Val15) is an important structural regulatory element by affecting protein stability and turnover, thereby likely reducing Bcl-2's ability to modulate the function of its targets, like IP3 R and BAX. Therefore, Bcl-2 structure/function studies require pre-emptive and reliable determination of protein stability upon introduction of point mutations at the level of the BH4 domain.


Subject(s)
Isoleucine/genetics , Point Mutation , Proto-Oncogene Proteins c-bcl-2/genetics , Valine/genetics , Animals , Apoptosis/genetics , COS Cells , Calcium/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Isoleucine/chemistry , Isoleucine/metabolism , Mice , Models, Molecular , Protein Binding , Protein Domains , Protein Stability , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Valine/chemistry , Valine/metabolism
16.
Cell Calcium ; 70: 102-116, 2018 03.
Article in English | MEDLINE | ID: mdl-28705421

ABSTRACT

Bcl-2-protein family members are essential regulators of apoptosis. Anti-apoptotic Bcl-2 proteins ensure cell survival via different mechanisms, including via binding of pro-apoptotic Bcl-2-family members and the modulation of intracellular Ca2+-transport systems. Many cancer cells upregulate these proteins to overcome the consequences of ongoing oncogenic stress. Bcl-2 inhibition leading to cell death, therefore emerged as a novel cancer therapy. Different Bcl-2 inhibitors have already been developed including the hydrophobic cleft-targeting BH3 mimetics, which antagonize Bcl-2's ability to scaffold and neutralize pro-apoptotic Bcl-2-family members. As such, the BH3 mimetics have progressed into clinical studies as precision medicines. Furthermore, new inhibitors that target Bcl-2's BH4 domain have been developed as promising anti-cancer tools. Given Bcl-2's role in Ca2+ signaling, these drugs and tools can impact Ca2+ signaling. In addition to this, some Bcl-2 inhibitors may have "off-target" effects that cause Ca2+-signaling dysregulation not only in cancer cells but also in healthy cells, resulting in adverse effects. In this review, we aim to provide an up-to-date overview of the involvement of intracellular Ca2+ signaling in the working mechanism and "off-target" effects of the different Bcl-2-antagonizing small molecules and peptides.


Subject(s)
Antineoplastic Agents/pharmacology , Calcium Signaling/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Humans , Models, Biological , Proto-Oncogene Proteins c-bcl-2/metabolism
17.
Front Oncol ; 7: 70, 2017.
Article in English | MEDLINE | ID: mdl-28516062

ABSTRACT

Calcium ions (Ca2+) are crucial, ubiquitous, intracellular second messengers required for functional mitochondrial metabolism during uncontrolled proliferation of cancer cells. The mitochondria and the endoplasmic reticulum (ER) are connected via "mitochondria-associated ER membranes" (MAMs) where ER-mitochondria Ca2+ transfer occurs, impacting the mitochondrial biology related to several aspects of cellular survival, autophagy, metabolism, cell death sensitivity, and metastasis, all cancer hallmarks. Cancer cells appear addicted to these constitutive ER-mitochondrial Ca2+ fluxes for their survival, since they drive the tricarboxylic acid cycle and the production of mitochondrial substrates needed for nucleoside synthesis and proper cell cycle progression. In addition to this, the mitochondrial Ca2+ uniporter and mitochondrial Ca2+ have been linked to hypoxia-inducible factor 1α signaling, enabling metastasis and invasion processes, but they can also contribute to cellular senescence induced by oncogenes and replication. Finally, proper ER-mitochondrial Ca2+ transfer seems to be a key event in the cell death response of cancer cells exposed to chemotherapeutics. In this review, we discuss the emerging role of ER-mitochondrial Ca2+ fluxes underlying these cancer-related features.

18.
Adv Exp Med Biol ; 981: 149-178, 2017.
Article in English | MEDLINE | ID: mdl-29594861

ABSTRACT

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.


Subject(s)
Apoptosis/physiology , Calcium Signaling/physiology , Calcium/metabolism , Cell Membrane/metabolism , Energy Metabolism/physiology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Cell Membrane/genetics , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mitochondria/genetics , Mitochondria/metabolism
19.
Cell Calcium ; 60(2): 74-87, 2016 08.
Article in English | MEDLINE | ID: mdl-27157108

ABSTRACT

The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.


Subject(s)
Apoptosis , Autophagy , Calcium Signaling , Calcium/metabolism , Intracellular Space/metabolism , Membrane Microdomains/metabolism , Animals , Cell Survival , Humans
20.
Biochem Biophys Res Commun ; 473(2): 462-70, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26975470

ABSTRACT

Satellite cells that reside on the myofibre surface are crucial for the muscle homeostasis and regeneration. Aging goes along with a less effective regeneration of skeletal muscle tissue mainly due to the decreased myogenic capability of satellite cells. This phenomenon impedes proper maintenance and contributes to the age-associated decline in muscle mass, known as sarcopenia. The myogenic potential impairment does not depend on a reduced myogenic cell number, but mainly on their difficulty to complete a differentiation program. The unbalanced production of reactive oxygen species in elderly people could be responsible for skeletal muscle impairments. microRNAs are conserved post-transcriptional regulators implicated in numerous biological processes including adult myogenesis. Here, we measure the ROS level and analyze myomiR (miR-1, miR-133b and miR-206) expression in human myogenic precursors obtained from Vastus lateralis of elderly and young subjects to provide the molecular signature responsible for the differentiation impairment of elderly activated satellite cells.


Subject(s)
Aging , Gene Expression Regulation , MicroRNAs/genetics , Muscle Development , Reactive Oxygen Species/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cells, Cultured , Humans , Male , Sarcopenia/genetics , Sarcopenia/metabolism , Satellite Cells, Skeletal Muscle/cytology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...