Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Proteins ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808365

ABSTRACT

We apply methods of Artificial Intelligence and Machine Learning to protein dynamic bioinformatics. We rewrite the sequences of a large protein data set, containing both folded and intrinsically disordered molecules, using a representation developed previously, which encodes the intrinsic dynamic properties of the naturally occurring amino acids. We Fourier analyze the resulting sequences. It is demonstrated that classification models built using several different supervised learning methods are able to successfully distinguish folded from intrinsically disordered proteins from sequence alone. It is further shown that the most important sequence property for this discrimination is the sequence mobility, which is the sequence averaged value of the residue-specific average alpha carbon B factor. This is in agreement with previous work, in which we have demonstrated the central role played by the sequence mobility in protein dynamic bioinformatics and biophysics. This finding opens a path to the application of dynamic bioinformatics, in combination with machine learning algorithms, to a range of significant biomedical problems.

2.
J Med Chem ; 67(2): 1447-1459, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198520

ABSTRACT

Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11. One of the key downstream targets of the constitutively active Gq alpha subunits is the protein kinase C (PKC) signaling pathway. Herein, we describe the discovery of darovasertib (NVP-LXS196), a potent pan-PKC inhibitor with high whole kinome selectivity. The lead series was optimized for kinase and off target selectivity to afford a compound that is rapidly absorbed and well tolerated in preclinical species. LXS196 is being investigated in the clinic as a monotherapy and in combination with other agents for the treatment of uveal melanoma (UM), including primary UM and metastatic uveal melanoma (MUM).


Subject(s)
Melanoma , Uveal Neoplasms , Adult , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Melanoma/drug therapy , Melanoma/pathology , Uveal Neoplasms/drug therapy , Uveal Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
3.
J Med Chem ; 65(17): 11478-11484, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35981217

ABSTRACT

A drug is a sophisticated molecule, purposely evolved, resulting from the accumulation of knowledge learned and exploited from simpler molecules over time. Advanced molecules with increased sophistication and capability are derived from simpler, less sophisticated structures with less capabilities. Medicinal chemists do not find, stumble upon, accidentally discover, screen for, or construct drugs. We purposefully evolve molecules through the use of feedback cycles; we emphasize efficiency and simplicity in pursuit of multiproperty homeostasis; and we design and learn from molecular outliers. This Miniperspective illustrates inspirational themes from nature including evolution, feedback cycles, homeostasis, efficiency, and mutation. These biological themes are then exemplified in modern medicinal chemistry practices, such as design-make-test-analyze cycles (feedback), balancing molecular properties (homeostasis), defining the minimum pharmacophore (simplicity, efficiency), understanding molecular outliers (mutants), and the unifying concept of molecular evolution.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Chemistry, Pharmaceutical/methods
4.
Elife ; 102021 03 23.
Article in English | MEDLINE | ID: mdl-33755016

ABSTRACT

SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.


Subject(s)
ErbB Receptors/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteomics/methods , Catalysis , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , Occludin/metabolism , Phospholipase C gamma/metabolism , Phosphoproteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Piperidines/metabolism , Piperidines/pharmacology , Protein Binding , Pyrimidines/metabolism , Pyrimidines/pharmacology , Repressor Proteins/metabolism , Signal Transduction/drug effects , src Homology Domains
5.
Sci Rep ; 11(1): 1399, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446805

ABSTRACT

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


Subject(s)
Immunity, Cellular , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction/genetics
6.
Clin Cancer Res ; 27(1): 342-354, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33046519

ABSTRACT

PURPOSE: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. EXPERIMENTAL DESIGN: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASG12Ci, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models in vitro and in vivo, and their effects on downstream signaling were examined. RESULTS: In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAFV600E colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRASG12C cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRASG12Ci and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. CONCLUSIONS: Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mice , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Xenograft Model Antitumor Assays
7.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32910655

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Antineoplastic Agents/therapeutic use , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Macaca fascicularis , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Rats , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
8.
Oncotarget ; 11(3): 265-281, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-32076487

ABSTRACT

SHP2 mediates RAS activation downstream of multiple receptor tyrosine kinases (RTKs) and cancer cell lines dependent on RTKs are in general dependent on SHP2. Profiling of the allosteric SHP2 inhibitor SHP099 across cancer cell lines harboring various RTK dependencies reveals that FGFR-dependent cells are often insensitive to SHP099 when compared to EGFR-dependent cells. We find that FGFR-driven cells depend on SHP2 but exhibit resistance to SHP2 inhibitors in vitro and in vivo. Treatment of such models with SHP2 inhibitors results in an initial decrease in phosphorylated ERK1/2 (p-ERK) levels, however p-ERK levels rapidly rebound within two hours. This p-ERK rebound is blocked by FGFR inhibitors or high doses of SHP2 inhibitors. Mechanistically, compared with EGFR-driven cells, FGFR-driven cells tend to express high levels of RTK negative regulators such as the SPRY family proteins, which are rapidly downregulated upon ERK inhibition. Moreover, over-expression of SPRY4 in FGFR-driven cells prevents MAPK pathway reactivation and sensitizes them to SHP2 inhibitors. We also identified two novel combination approaches to enhance the efficacy of SHP2 inhibitors, either with a distinct site 2 allosteric SHP2 inhibitor or with a RAS-SOS1 interaction inhibitor. Our findings suggest the rapid FGFR feedback activation following initial pathway inhibition by SHP2 inhibitors may promote the open conformation of SHP2 and lead to resistance to SHP2 inhibitors. These findings may assist to refine patient selection and predict resistance mechanisms in the clinical development of SHP2 inhibitors and to suggest strategies for discovering SHP2 inhibitors that are more effective against upstream feedback activation.

9.
Mol Cancer Ther ; 18(12): 2368-2380, 2019 12.
Article in English | MEDLINE | ID: mdl-31439712

ABSTRACT

KRAS, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells in vitro and in vivo using cell line xenografts and primary human tumors. In vitro, sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids. This antitumor activity is also observed in vivo in mouse models. Interrogation of the MAPK pathway in SHP099-treated KRAS-mutant cancer models demonstrated similar modulation of p-ERK and DUSP6 transcripts in 2D, 3D, and in vivo, suggesting a MAPK pathway-dependent mechanism and possible non-MAPK pathway-dependent mechanisms in tumor cells or tumor microenvironment for the in vivo efficacy. For the KRASG12C MIAPaCa-2 model, we demonstrate that the efficacy is cancer cell intrinsic as there is minimal antiangiogenic activity by SHP099, and the effects of SHP099 is recapitulated by genetic depletion of SHP2 in cancer cells. Furthermore, we demonstrate that SHP099 efficacy in KRAS-mutant models can be recapitulated with RTK inhibitors, suggesting RTK activity is responsible for the SHP2 activation. Taken together, these data reveal that many KRAS-mutant cancers depend on upstream signaling from RTK and SHP2, and provide a new therapeutic framework for treating KRAS-mutant cancers with SHP2 inhibitors.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tachykinins/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Neoplasms/pathology , Signal Transduction , Xenograft Model Antitumor Assays
12.
J Med Chem ; 62(4): 1793-1802, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30688459

ABSTRACT

Protein tyrosine phosphatase SHP2 is an oncoprotein associated with cancer as well as a potential immune modulator because of its role in the programmed cell death PD-L1/PD-1 pathway. In the preceding manuscript, we described the optimization of a fused, bicyclic screening hit for potency, selectivity, and physicochemical properties in order to further expand the chemical diversity of allosteric SHP2 inhibitors. In this manuscript, we describe the further expansion of our approach, morphing the fused, bicyclic system into a novel monocyclic pyrimidinone scaffold through our understanding of SAR and use of structure-based design. These studies led to the identification of SHP394 (1), an orally efficacious inhibitor of SHP2, with high lipophilic efficiency, improved potency, and enhanced pharmacokinetic properties. We also report other pyrimidinone analogues with favorable pharmacokinetic and potency profiles. Overall, this work improves upon our previously described allosteric inhibitors and exemplifies and extends the range of permissible chemical templates that inhibit SHP2 via the allosteric mechanism.


Subject(s)
Aminopyridines/therapeutic use , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidinones/therapeutic use , Administration, Oral , Allosteric Regulation , Allosteric Site , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Male , Mice, Inbred C57BL , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
13.
J Med Chem ; 62(4): 1781-1792, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30688462

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase within the mitogen-activated protein kinase (MAPK) pathway controlling cell growth, differentiation, and oncogenic transformation. SHP2 also participates in the programed cell death pathway (PD-1/PD-L1) governing immune surveillance. Small-molecule inhibition of SHP2 has been widely investigated, including in our previous reports describing SHP099 (2), which binds to a tunnel-like allosteric binding site. To broaden our approach to allosteric inhibition of SHP2, we conducted additional hit finding, evaluation, and structure-based scaffold morphing. These studies, reported here in the first of two papers, led to the identification of multiple 5,6-fused bicyclic scaffolds that bind to the same allosteric tunnel as 2. We demonstrate the structural diversity permitted by the tunnel pharmacophore and culminated in the identification of pyrazolopyrimidinones (e.g., SHP389, 1) that modulate MAPK signaling in vivo. These studies also served as the basis for further scaffold morphing and optimization, detailed in the following manuscript.


Subject(s)
Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Allosteric Regulation , Allosteric Site , Animals , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/metabolism , Humans , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship
14.
Nat Commun ; 9(1): 4508, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375388

ABSTRACT

Activating mutations in PTPN11, encoding the cytosolic protein tyrosine phosphatase SHP2, result in developmental disorders and act as oncogenic drivers in patients with hematologic cancers. The allosteric inhibitor SHP099 stabilizes the wild-type SHP2 enzyme in an autoinhibited conformation that is itself destabilized by oncogenic mutations. Here, we report the impact of the highly activated and most frequently observed mutation, E76K, on the structure of SHP2, and investigate the effect of E76K and other oncogenic mutations on allosteric inhibition by SHP099. SHP2E76K adopts an open conformation but can be restored to the closed, autoinhibited conformation, near-identical to the unoccupied wild-type enzyme, when complexed with SHP099. SHP099 inhibitory activity against oncogenic SHP2 variants in vitro and in cells scales inversely with the activating strength of the mutation, indicating that either oncoselective or vastly more potent inhibitors will be necessary to suppress oncogenic signaling by the most strongly activating SHP2 mutations in cancer.


Subject(s)
Allosteric Regulation/genetics , Piperidines/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Pyrimidines/metabolism , Humans , Mutation , Oncogene Proteins , Piperidines/pharmacology , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/ultrastructure , Pyrimidines/pharmacology
15.
ACS Chem Biol ; 13(3): 647-656, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29304282

ABSTRACT

SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.


Subject(s)
Allosteric Regulation , Allosteric Site , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Protein Conformation , Protein Stability
16.
Bioorg Med Chem ; 25(24): 6479-6485, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29089257

ABSTRACT

The PTPN11 oncogene encodes the cytoplasmic protein tyrosine phosphatase SHP2, which, through its role in multiple signaling pathways, promotes the progression of hematological malignancies and other cancers. Here, we employ high-throughput screening to discover a lead chemical scaffold, the benzothiazolopyrimidones, that allosterically inhibits this oncogenic phosphatase by simultaneously engaging the C-SH2 and PTP domains. We improved our lead to generate an analogue that better suppresses SHP2 activity in vitro. Suppression of Erk phopsphorylation by the lead compound is also consistent with SHP2 inhibition in AML cells. Our findings provide an alternative starting point for therapeutic intervention and will catalyze investigations into the relationship between SHP2 conformational regulation, activity, and disease progression.


Subject(s)
Benzothiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidinones/pharmacology , Allosteric Regulation/drug effects , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship
17.
Nature ; 535(7610): 148-52, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362227

ABSTRACT

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Models, Molecular , Neoplasms/pathology , Oncogene Protein p21(ras)/metabolism , Piperidines/chemistry , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Stability/drug effects , Protein Structure, Tertiary/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Reproducibility of Results , Xenograft Model Antitumor Assays
18.
J Med Chem ; 59(14): 6920-8, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27355833

ABSTRACT

Synthetic studies of the antimicrobial secondary metabolite thiomuracin A (1) provided access to analogues in the Northern region (C2-C10). Selective hydrolysis of the C10 amide of lead compound 2 and subsequent derivatization led to novel carbon- and nitrogen-linked analogues (e.g., 3) which improved antibacterial potency across a panel of Gram-positive organisms. In addition, congeners with improved physicochemical properties were identified which proved efficacious in murine sepsis and hamster C. difficile models of disease. Optimal efficacy in the hamster model of C. difficile was achieved with compounds that possessed both potent antibacterial activity and high aqueous solubility.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Peptides, Cyclic/pharmacology , Thiazoles/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Solubility , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
19.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27347692

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Subject(s)
Antineoplastic Agents/chemistry , Piperidines/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/chemistry , Pyrimidines/chemistry , Administration, Oral , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Female , Heterografts , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
20.
Biochemistry ; 55(15): 2269-77, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27030275

ABSTRACT

The proto-oncogene PTPN11 encodes a cytoplasmic protein tyrosine phosphatase, SHP2, which is required for normal development and sustained activation of the Ras-MAPK signaling pathway. Germline mutations in SHP2 cause developmental disorders, and somatic mutations have been identified in childhood and adult cancers and drive leukemia in mice. Despite our knowledge of the PTPN11 variations associated with pathology, the structural and functional consequences of many disease-associated mutants remain poorly understood. Here, we combine X-ray crystallography, small-angle X-ray scattering, and biochemistry to elucidate structural and mechanistic features of three cancer-associated SHP2 variants harboring single point mutations within the N-SH2:PTP interdomain autoinhibitory interface. Our findings directly compare the impact of each mutation on autoinhibition of the phosphatase and advance the development of structure-guided and mutation-specific SHP2 therapies.


Subject(s)
Neoplasms/genetics , Point Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Amino Acid Substitution/genetics , Cell Transformation, Neoplastic/genetics , Crystallography, X-Ray , Enzyme Activation/genetics , Humans , Leukemia/genetics , Ligands , Models, Molecular , Oncogenes/genetics , Protein Structure, Tertiary/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Mas , Scattering, Small Angle , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...