Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38214235

ABSTRACT

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Subject(s)
Pyrrolidinones , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Pyrrolidinones/pharmacology , RNA Polymerase II/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic , Zinc
2.
Nucleic Acids Res ; 51(20): 11277-11290, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37811893

ABSTRACT

Large ribosomal subunit precursors (pre-LSUs) are primarily synthesized in the nucleolus. At an undetermined step in their assembly, they are released into the nucleoplasm. Structural models of yeast pre-LSUs at various stages of assembly have been collected using cryo-EM. However, which cryo-EM model is closest to the final nucleolar intermediate of the LSU has yet to be determined. To elucidate the mechanisms of the release of pre-LSUs from the nucleolus, we assayed effects of depleting or knocking out two yeast ribosome biogenesis factors (RiBi factors), Puf6 and Nog2, and two ribosomal proteins, uL2 and eL43. These proteins function during or stabilize onto pre-LSUs between the late nucleolar stages to early nucleoplasmic stages of ribosome biogenesis. By characterizing the phenotype of these four mutants, we determined that a particle that is intermediate between the cryo-EM model State NE1 and State NE2 likely represents the final nucleolar assembly intermediate of the LSU. We conclude that the release of the RiBi factors Nip7, Nop2 and Spb1 and the subsequent stabilization of rRNA domains IV and V may be key triggers for the release of pre-LSUs from the nucleolus.


Subject(s)
Ribosomal Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ribosomal Proteins/metabolism , Ribosome Subunits, Large/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , RNA, Ribosomal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Nucleic Acids Res ; 51(20): 10867-10883, 2023 11 10.
Article in English | MEDLINE | ID: mdl-35736211

ABSTRACT

During eukaryotic ribosome biogenesis, pre-ribosomes travel from the nucleolus, where assembly is initiated, to the nucleoplasm and then are exported to the cytoplasm, where assembly concludes. Although nuclear export of pre-ribosomes has been extensively investigated, the release of pre-ribosomes from the nucleolus is an understudied phenomenon. Initial data indicate that unfolded rRNA interacts in trans with nucleolar components and that, when rRNA folds due to ribosomal protein (RP) binding, the number of trans interactions drops below the threshold necessary for nucleolar retention. To validate and expand on this idea, we performed a bioinformatic analysis of the protein components of the Saccharomyces cerevisiae ribosome assembly pathway. We found that ribosome biogenesis factors (RiBi factors) contain significantly more predicted trans interacting regions than RPs. We also analyzed cryo-EM structures of ribosome assembly intermediates to determine how nucleolar pre-ribosomes differ from post-nucleolar pre-ribosomes, specifically the capacity of RPs, RiBi factors, and rRNA components to interact in trans. We observed a significant decrease in the theoretical trans-interacting capability of pre-ribosomes between nucleolar and post-nucleolar stages of assembly due to the release of RiBi factors from particles and the folding of rRNA. Here, we provide a mechanism for the release of pre-ribosomes from the nucleolus.


Subject(s)
Cell Nucleolus , Ribosomes , Saccharomyces cerevisiae , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
RNA Biol ; 14(10): 1306-1313, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28267408

ABSTRACT

Ribosomes are responsible for translating the genome, in the form of mRNA, into the proteome in all organisms. Biogenesis of ribosomes in eukaryotes is a complex process involving numerous remodeling events driven in part by the concerted actions of hundreds of protein assembly factors. A major challenge in studying eukaryotic ribosome assembly has, until recently, been a lack of structural data to facilitate understanding of the conformational and compositional changes the pre-ribosome undergoes during its construction. Cryo-electron microscopy (cryo-EM) has begun filling these gaps; recent advances in cryo-EM have enabled the determination of several high resolution pre-ribosome structures. This review focuses mainly on lessons learned from the study of pre-60S particles purified from yeast using the assembly factor Nog2 as bait. These Nog2 particles provide insight into many aspects of nuclear stages of 60S subunit assembly, including construction of major 60S subunit functional centers and processing of the ITS2 spacer RNA.


Subject(s)
GTP Phosphohydrolases/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cryoelectron Microscopy , DNA, Ribosomal Spacer , Models, Molecular , Protein Biosynthesis , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...