Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 97(1155): 614-621, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38303547

ABSTRACT

OBJECTIVES: To compare brain MRI measures between Adult Changes in Thought (ACT) participants who underwent research, clinical, or both MRI scans, and clinical health measures across the groups and non-MRI subjects. METHODS: Retrospective cohort study leveraging MRI, clinical, demographic, and medication data from ACT. Three neuroradiologists reviewed MRI scans using NIH Neuroimaging Common Data Elements (CDEs). Total brain and white matter hyperintensity (WMH) volumes, clinical characteristics, and outcome measures of brain and overall health were compared between groups. 1166 MRIs were included (77 research, 1043 clinical, and 46 both) and an additional 3146 participants with no MRI were compared. RESULTS: Compared to the group with research MRI only, the clinical MRI group had higher prevalence of the following: acute infarcts, chronic haematoma, subarachnoid haemorrhage, subdural haemorrhage, haemorrhagic transformation, and hydrocephalus (each P < .001). Quantitative WMH burden was significantly lower (P < .001) and total brain volume significantly higher (P < .001) in research MRI participants compared to other MRI groups. Prevalence of hypertension, self-reported cerebrovascular disease, congestive heart failure, dementia, and recent hospitalization (all P < .001) and diabetes (P = .002) differed significantly across groups, with smaller proportions in the research MRI group. CONCLUSION: In ageing populations, significant differences were observed in MRI metrics between research MRI and clinical MRI groups, and clinical health metric differences between research MRI, clinical MRI, and no-MRI groups. ADVANCES IN KNOWLEDGE: This questions whether research cohorts can adequately represent the greater ageing population undergoing imaging. These findings may also be useful to radiologists when interpreting neuroimaging of ageing.


Subject(s)
Brain , Cerebrovascular Disorders , Adult , Humans , Retrospective Studies , Brain/diagnostic imaging , Aging , Neuroimaging , Magnetic Resonance Imaging/methods
2.
JMIR Rehabil Assist Technol ; 7(2): e17822, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32876580

ABSTRACT

BACKGROUND: Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients. OBJECTIVE: The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss. METHODS: Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game's acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative. RESULTS: Patients (n=5) completed a total of 23 out of 45 scheduled augmented reality game sessions, with patient fatigue as the primary factor for uncompleted sessions. Each patient consented to 9 potential game sessions and completed a mean of 4.6 (SE 1.3) games. Of the 5 patients, 4 (80%) completed the questionnaire at the end of their final gaming session. Of note, patients were motivated to continue to the end of a given gaming session (mean 4.25, 95% CI 3.31-5.19), to try other game-based therapies (mean 3.75, 95% CI 2.81-4.69), to do another session (mean 3.50, 95% CI 2.93-4.07), and to perform other daily rehabilitation exercises (mean 3.25, 95% CI 2.76-3.74). In addition, participants gave mean scores of 4.00 (95% CI 2.87-5.13) for overall experience; 4.25 (95% CI 3.31-5.19) for comfort; 3.25 (95% CI 2.31-4.19) for finding the study fun, enjoyable, and engaging; and 3.50 (95% CI 2.52-4.48) for believing the technology could help them reach their rehabilitation goals. For each of the 4 patients, their reported scores were statistically significantly higher than those generated by a random sampling of values (patient 1: P=.04; patient 2: P=.04; patient 4: P=.004; patient 5: P=.04). CONCLUSIONS: Based on the questionnaire scores, the patients with upper limb motor deficits following stroke who participated in our case study found our augmented reality game motivating, comfortable, engaging, and tolerable. Improvements in augmented reality technology motivated by this case study may one day allow patients to work with improved versions of this therapy independently in their own home. We therefore anticipate that smartphone-based augmented reality gaming systems may eventually provide useful postdischarge self-treatment as a supplement to professional therapy for patients with upper limb deficiencies from stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...