Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 535(7611): 246-51, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27383785

ABSTRACT

Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.


Subject(s)
Gene Amplification/genetics , MicroRNAs/genetics , Neuroblastoma/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , RNA-Binding Proteins/genetics , 3' Untranslated Regions/genetics , Animals , Chromosome Deletion , Female , Gene Deletion , Genes, Neoplasm/genetics , Humans , Mice , MicroRNAs/metabolism , Models, Genetic , N-Myc Proto-Oncogene Protein , Neuroblastoma/pathology , Xenograft Model Antitumor Assays
2.
Genes Dev ; 29(10): 1074-86, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25956904

ABSTRACT

Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (ß-catenin) mutation. When overexpressed in Apc(Min/+) mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target.


Subject(s)
Adenocarcinoma/physiopathology , Colorectal Neoplasms/physiopathology , RNA-Binding Proteins/metabolism , Signal Transduction , Wnt Proteins/metabolism , Animals , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/physiopathology , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...