Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 22220, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782665

ABSTRACT

Peripheral blood mononuclear cells (PBMCs) respond to altered physiological conditions to alleviate the threat. Production of the 70 kDa heat shock protein (HSP70) is up-regulated to protect proteins from degradation. Sequestosome-1 (p62) binds to altered proteins and the p62-protein complex is degraded by autophagy. P62 is also a regulator of intracellular kinase activity and cell differentiation. We hypothesized that the PBMC response to a malignant breast mass involves elevated production of HSP70 and a decrease in intracellular p62. In this study 46 women had their breast mass excised. PBMCs were isolated and intracellular levels of HSP70 and p62 were quantitated by ELISA. Differences between women with a benign or malignant breast mass were determined. A breast malignancy was diagnosed in 38 women (82.6%) while 8 had a benign lesion. Mean intracellular HSP70 levels were 79.3 ng/ml in PBMCs from women with a malignant lesion as opposed to 44.2 ng/ml in controls (p = 0.04). The mean PBMC p62 level was 2.3 ng/ml in women with a benign breast lesion as opposed to 0.6 ng/ml in those with breast cancer (p < 0.001). Mean p62 levels were lowest in women with invasive carcinoma and a positive lymph node biopsy when compared to those with in-situ carcinoma or absence of lymphadenopathy, respectively. Intracellular HSP70 and p62 levels in PBMCs differ between women with a malignant or benign breast lesion. These measurements may be of value in the preoperative triage of women with a breast mass.


Subject(s)
Breast Neoplasms/metabolism , HSP70 Heat-Shock Proteins/metabolism , Sequestosome-1 Protein/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease Susceptibility/immunology , Female , HSP70 Heat-Shock Proteins/genetics , Humans , Intracellular Space/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Middle Aged , Risk Factors , Sequestosome-1 Protein/genetics
2.
NPJ Breast Cancer ; 7(1): 108, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34426581

ABSTRACT

Tetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.

SELECTION OF CITATIONS
SEARCH DETAIL
...