Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 82(19): 9389-99, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18632855

ABSTRACT

The two enteroviral proteinases, 2A proteinase (2A(pro)) and 3C proteinase (3C(pro)), induce host cell translation shutoff in enterovirus-infected cells by cleaving canonical translation initiation factors. Cleavage of poly(A)-binding protein (PABP) by 3C(pro) has been shown to be a necessary component for host translation shutoff. Here we show that 3C(pro) inhibits cap-independent translation mediated by the poliovirus internal ribosome entry site (IRES) in a dose-dependent manner in HeLa translation extracts displaying cap-poly(A) synergy. This effect is independent of the stimulatory effect of 2A(pro) on IRES translation, and 3C(pro)-induced translation inhibition can be partially rescued by addition of recombinant PABP in vitro. 3C(pro) inhibits IRES translation on transcripts containing or lacking poly(A) tails, suggesting that cleavage of PABP and IRES trans-activating factors polypyrimidine tract-binding protein and poly r(C)-binding protein 2 may also be important for inhibition. Expression of 3C(pro) cleavage-resistant PABP in cells increased translation of nonreplicating viral minigenome reporter RNAs during infection and also delayed and reduced virus protein synthesis from replicating RNA. Further, expression of cleavage-resistant PABP in cells reduced the accumulation of viral RNA and the output of infectious virus. These results suggest that cleavage of PABP contributes to viral translation shutoff that is required for the switch from translation to RNA replication.


Subject(s)
Cysteine Endopeptidases/chemistry , Gene Expression Regulation, Viral , Peptide Initiation Factors/chemistry , Poly A/chemistry , Protein Biosynthesis , Ribosomes/genetics , Viral Proteins/chemistry , 3C Viral Proteases , HeLa Cells , Humans , Models, Biological , Models, Genetic , Mutation , Poly(A)-Binding Proteins/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/chemistry
2.
Hepatology ; 47(5): 1578-86, 2008 May.
Article in English | MEDLINE | ID: mdl-18393320

ABSTRACT

UNLABELLED: The orphan nuclear hormone receptor small heterodimer partner (SHP) regulates the expression of several genes involved in bile acid homeostasis in the liver. Because bile acid toxicity is a major source of liver injury in cholestatic disease, we explored the role of SHP in liver damage induced by common bile duct ligation (BDL). Shp(-/-) mice show increased sensitivity in this model of acute obstructive cholestasis, with greater numbers of bile infarcts and higher mortality than wild-type C57BL/6 mice. This increased sensitivity could not be accounted for by differences in expression of bile acid homeostatic genes 2 or 5 days after BDL. Instead, higher basal expression of such genes, including the key biosynthetic enzyme cholesterol 7alpha hydroxylase (Cyp7A1) and the bile salt export pump, is associated with both an increase in bile flow prior to BDL and an increase in acute liver damage at only 1.5 hours after BDL in Shp(-/-) mice, as shown by bile infarcts. At 3 hours, Cyp7A1 expression still remained elevated in Shp(-/-) with respect to wild-type mice, and the hepatic and serum bile acid levels and total hepatobiliary bile acid pool were significantly increased. The increased sensitivity of mice lacking SHP contrasts with the decreased sensitivity of mice lacking the farnesoid X receptor (FXR; nuclear receptor subfamily 1, group H, member 4) to BDL, which has been associated with decreased intraductal pressure and fewer bile infarcts. CONCLUSION: We propose that differences in acute responses to BDL, particularly the early formation of bile infarcts, are a primary determinant of the differences in longer term sensitivity of the Fxr(-/-) and Shp(-/-) mice to acute obstructive cholestasis.


Subject(s)
Bile Ducts/pathology , Cholestasis/pathology , Liver/pathology , Receptors, Cell Surface/deficiency , Animals , Bile/metabolism , Common Bile Duct/pathology , Crosses, Genetic , DNA-Binding Proteins/deficiency , Dimerization , Female , Liver/injuries , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/deficiency , Transcription Factors/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...