Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Dis Model Mech ; 17(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38131122

ABSTRACT

Post-traumatic stress disorder (PTSD) is associated with osteopenia, osteoporosis and increased fracture risk in the clinical population. Yet, the development of preclinical models to study PTSD-induced bone loss remains limited. In this study, we present a previously unreported model of PTSD in adult female C57BL/6 mice, by employing inescapable foot shock and social isolation, that demonstrates high face and construct validity. A subset of mice exposed to this paradigm (i.e. PTSD mice) display long-term alterations in behavioral and inflammatory indices. Using three-dimensional morphometric calculations, cyclic reference point indentation (cRPI) testing and histological analyses, we find that PTSD mice exhibit loss of trabecular bone, altered bone material quality, and aberrant changes in bone tissue architecture and cellular activity. This adult murine model of PTSD exhibits clinically relevant changes in bone physiology and provides a valuable tool for investigating the cellular and molecular mechanisms underlying PTSD-induced bone loss.


Subject(s)
Stress Disorders, Post-Traumatic , Female , Mice , Animals , Stress Disorders, Post-Traumatic/complications , Mice, Inbred C57BL , Phenotype , Bone and Bones , Disease Models, Animal
2.
Bone Rep ; 18: 101662, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36860797

ABSTRACT

Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.

3.
Orthod Craniofac Res ; 26(3): 415-424, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36458927

ABSTRACT

OBJECTIVES: Antidepressants, specifically Selective Serotonin Re-uptake Inhibitors (SSRIs), that alter serotonin metabolism are currently the most commonly prescribed drugs for the treatment of depression. There is some evidence to suggest these drugs contribute to birth defects. As jaw development is often altered in craniofacial birth defects, the purpose of this study was to interrogate the effects of in utero SSRI exposure in a preclinical model of mandible development. MATERIALS AND METHODS: Wild-type C57BL6 mice were used to produce litters that were exposed in utero to an SSRI, Citalopram (500 µg/day). Murine mandibles from P15 pups were analysed for a change in shape and composition. RESULTS: Analysis indicated an overall shape change with total mandibular length and ramus height being shorter in exposed pups as compared to controls. Histomorphometric analysis revealed that first molar length was longer in exposed pups while third molar length was shorter in exposed as compared to control. Histological investigation of molars and surrounding periodontium revealed no change in collagen content of the molar in exposed pups, some alteration in collagen composition in the periodontium, increased alkaline phosphatase in molars and periodontium and decreased mesenchymal cell marker presence in exposed mandibles. CONCLUSION: The results of this study reveal SSRI exposure may interrupt mandible growth as well as overall dental maturation in a model of development giving insight into the expectation that children exposed to SSRIs may require orthodontic intervention.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Serotonin , Animals , Mice , Selective Serotonin Reuptake Inhibitors/adverse effects , Serotonin/metabolism , Mice, Inbred C57BL , Citalopram/adverse effects , Mandible/metabolism
4.
Calcif Tissue Int ; 112(4): 403-421, 2023 04.
Article in English | MEDLINE | ID: mdl-36422682

ABSTRACT

Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Humans , Signal Transduction , Skeleton , Sternum/pathology , Mutation
5.
Front Immunol ; 13: 830169, 2022.
Article in English | MEDLINE | ID: mdl-35651620

ABSTRACT

Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.


Subject(s)
Breast Neoplasms , Neuropilin-2 , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Neuropilin-1/genetics , Neuropilin-2/genetics , Neuropilin-2/metabolism , Protein Isoforms , Tumor-Associated Macrophages
6.
Stem Cells ; 39(11): 1457-1477, 2021 11.
Article in English | MEDLINE | ID: mdl-34224636

ABSTRACT

Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.


Subject(s)
Osteogenesis Imperfecta , Animals , Disease Models, Animal , Hematopoietic Stem Cells , Humans , Mice , Mice, Transgenic , Osteoblasts , Osteogenesis , Osteogenesis Imperfecta/therapy
7.
Life Sci ; 282: 119839, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34293400

ABSTRACT

AIMS: Respiratory disorders are a prominent component of Gulf War Illness. Although much of the underlying mechanisms of Gulf War Illness remain undefined, chronic immune dysfunction is a consistent feature of this multi-symptomatic, multi-organ disorder. Alveolar macrophages represent the predominant mononuclear phagocytes of the pulmonary mucosa, orchestrating the host response to pathogens and environmental stimuli. Herein, we sought to characterize the innate immune response of the pulmonary mucosa, with a focus on macrophages, to experimental respiratory exposure to two putative Gulf War Toxins (GWTs). MATERIALS AND METHODS: Utilizing commercially available instrumentation, we evaluated the effect of aerosolized exposure to the pesticide malathion and diesel exhaust particulate (DEP) on the immune composition and inflammatory response of the lung in FVB/N mice using multiparametric spectral cytometry, cytokine analysis, and histology. KEY FINDINGS: Aerosolized GWTs induced gross pulmonary pathology with transient recruitment of neutrophils and sustained accumulation of alveolar macrophages to the lung for up to two weeks after exposure cessation. High-dimensional cytometry and unbiased computational analysis identified novel myeloid subsets recruited to the lung post-exposure driven by an influx of peripheral monocyte-derived progenitors. DEP and malathion, either alone or in combination, induced soluble mediators in bronchoalveolar lavage indicative of oxidative stress (PGF2α), inflammation (LTB4, TNFα, IL-12), and immunosuppression (IL-10), that were sustained or increased two weeks after exposures concluded. SIGNIFICANCE: These findings indicate that macrophage accumulation and pulmonary inflammation induced by GWTs continue in the absence of toxin exposure and may contribute to the immunopathology of respiratory Gulf War Illness.


Subject(s)
Gulf War , Macrophages, Alveolar , Pneumonia , Vehicle Emissions/toxicity , Animals , Bronchoalveolar Lavage , Female , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Mice , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology
8.
Am J Physiol Heart Circ Physiol ; 320(2): H604-H612, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33306449

ABSTRACT

In human heart failure and in murine hearts with left-ventricular pressure overload (LVPO), increases in fibrosis are associated with increases in myocardial stiffness. Secreted protein acidic and rich in cysteine (SPARC) is shown to be necessary for both cardiac fibrosis and increases in myocardial stiffness in response to LVPO; however, cellular sources of cardiac SPARC are incompletely defined. Irradiation and bone marrow transfer were undertaken to test the hypothesis that SPARC expression by bone marrow-derived cells is an important mediator of fibrosis in LVPO. In recipient SPARC-null mice transplanted with donor wild-type (WT) bone marrow and subjected to LVPO, levels of fibrosis similar to that of WT mice were found despite the lack of SPARC expression by resident cells. In recipient WT mice with donor SPARC-null bone marrow, significantly less fibrosis versus that of WT mice was found despite the expression of SPARC by resident cells. Increases in myocardial stiffness followed a similar pattern to that of collagen deposition. Myocardial macrophages were significantly reduced in SPARC-null mice with LVPO versus that of WT mice. Recipient SPARC-null mice transplanted with donor WT bone marrow exhibited an increase in cardiac macrophages versus that of SPARC-null LVPO and donor WT mice with recipient SPARC-null bone marrow. Expression of vascular cellular adhesion molecule (VCAM), a previously identified binding partner of SPARC, was assessed in all groups and with the exception of WT mice, increases in VCAM immunoreactivity with LVPO were observed. However, no differences in VCAM expression between bone marrow transplant groups were noted. In conclusion, SPARC expression by bone marrow-derived cells was critical for fibrotic deposition of collagen and influenced the expansion of myocardial macrophages in response to LVPO.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in LV and myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, a murine model of cardiac fibrosis induced by PO was used to demonstrate a critical function of SPARC in bone marrow-derived cells that drives cardiac fibrosis and increases in cardiac macrophages.


Subject(s)
Blood Pressure , Cardiomegaly/metabolism , Myocardium/metabolism , Osteonectin/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Fibrillar Collagens/metabolism , Fibrosis , Macrophages/pathology , Mice , Mice, Inbred C57BL , Myocardium/pathology , Osteonectin/genetics , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
9.
Am J Physiol Heart Circ Physiol ; 319(2): H331-H340, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32589444

ABSTRACT

Mechanisms that contribute to myocardial fibrosis, particularly in response to left ventricular pressure overload (LVPO), remain poorly defined. To test the hypothesis that a myocardial-specific profile of secreted factors is produced in response to PO, levels of 44 factors implicated in immune cell recruitment and function were assessed in a murine model of cardiac hypertrophy and compared with levels produced in a model of pulmonary fibrosis (PF). Mice subjected to PO were assessed at 1 and 4 wk. Protein from plasma, LV, lungs, and kidneys were analyzed by specific protein array analysis in parallel with protein from mice subjected to silica-instilled PF. Of the 44 factors assessed, 13 proteins were elevated in 1-wk PO myocardium, whereas 18 proteins were found increased in fibrotic lung. Eight of those increased in 1-wk LVPO were not found to be increased in fibrotic lungs (CCL-11, CCL-12, CCL-17, CCL-19, CCL-21, CCL-22, IL-16, and VEGF). Additionally, six factors were increased in plasma of 1-wk LVPO in the absence of increases in myocardial levels. In contrast, in mice with PF, no factors were found increased in plasma that were not elevated in lung tissue. Of those factors increased at 1 wk, only TIMP-1 remained elevated at 4 wk of LVPO. Immunohistochemistry of myocardial vasculature at 1 and 4 wk revealed similar amounts of total vasculature; however, evidence of activated endothelium was observed at 1 wk and, to a lesser extent, at 4 wk LVPO. In conclusion, PO myocardium generated a unique signature of cytokine expression versus that of fibrotic lung.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, cytokine profiles produced in a murine model of cardiac fibrosis induced by PO were compared with those produced in response to silica-induced lung fibrosis. A unique profile of cardiac tissue-specific and plasma-derived factors generated in response to PO are reported.


Subject(s)
Cytokines/blood , Hypertrophy, Left Ventricular/metabolism , Inflammation Mediators/blood , Lung/metabolism , Myocardium/metabolism , Pulmonary Fibrosis/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Disease Models, Animal , Female , Fibrosis , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Lung/pathology , Male , Mice, Inbred C57BL , Myocardium/pathology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology
10.
MethodsX ; 7: 100898, 2020.
Article in English | MEDLINE | ID: mdl-32382524

ABSTRACT

Although bone repair is typically an efficient process, an inadequate healing response can occur, with approximately 5-20% of fractures developing nonunion. Even with improved healing strategies and external fixation devices, overall rate of nonunion has not been significantly reduced, particularly for atrophic nonunion. Atrophic nonunion is characterized by sparse or no callus formation and is difficult to treat clinically, resulting in long-term pain and functional limitation. Reliable preclinical models are needed to study the pathophysiology of atrophic nonunion to create better treatment options. The MouseNail kit (RISystem, Landquart, Switzerland) provides a highly standardized approach in which stabilized segmental bone defects are achieved through interlocked intramedullary nailing. However, reliably performing this surgery is technically challenging, particularly while maintaining strict asepsis. Skilled and aseptic surgical execution is important and necessary because it ensures optimal animal welfare and reproducibility. Therefore, the aim of this paper is to describe:•Novel modifications to the MouseNail kit that allow for: 1) a completely aseptic surgical environment, including description of a hanging limb orthopedic aseptic preparation and 2) a reduction in fracture gap size necessary for induction of atrophic nonunion.•Pre- to post-operative recommendations to facilitate successful performance of murine orthopedic survival surgery.

11.
Life Sci ; 255: 117827, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32450170

ABSTRACT

AIMS: Data suggest pharmacological treatment of depression with selective serotonin reuptake inhibitors (SSRI) may impair bone health. Our group has previously modeled compromised craniofacial healing after treatment with sertraline, a commonly prescribed SSRI, and hypothesized potential culprits: alterations in bone cells, collagen, and/or inflammation. Here we interrogate bone lineage cell alterations due to sertraline treatment as a potential cause of the noted compromised bone healing. MAIN METHODS: Murine pre-osteoblast, pre-osteoclast, osteoblast, and osteoclast cells were treated with clinically relevant concentrations of the SSRI. Studies focused on serotonin pathway targets, cell viability, apoptosis, differentiation, and the osteoblast/osteoclast feedback loop. KEY FINDINGS: All cells studied express neurotransmitters (e.g. serotonin transporter, SLC6A4, SSRI target) and G-protein-coupled receptors associated with the serotonin pathway. Osteoclasts presented the greatest native expression of Slc6a4 with all cell types exhibiting decreases in Slc6a4 expression after SSRI treatment. Pre-osteoclasts exhibited alteration to their differentiation pathway after treatment. Pre-osteoblasts and osteoclasts showed reduced apoptosis after treatment but showed no significant differences in functional assays. RANKL: OPG mRNA and protein ratios were decreased in the osteoblast lineage. Osteoclast lineage cells treated with sertraline demonstrated diminished TRAP positive cells when pre-exposed to sertraline prior to RANKL-induced differentiation. SIGNIFICANCE: These data suggest osteoclasts are a likely target of bone homeostasis disruption due to sertraline treatment, most potently through the osteoblast/clast feedback loop.


Subject(s)
Bone and Bones/drug effects , Osteoblasts/drug effects , Osteoclasts/drug effects , Selective Serotonin Reuptake Inhibitors/toxicity , 3T3 Cells , Animals , Apoptosis/drug effects , Bone and Bones/cytology , Cell Differentiation/drug effects , Cell Survival/drug effects , Mice , Osteoblasts/cytology , Osteoclasts/cytology , RANK Ligand/metabolism , RAW 264.7 Cells , RNA, Messenger/metabolism
12.
Inhal Toxicol ; 32(5): 189-199, 2020 04.
Article in English | MEDLINE | ID: mdl-32448007

ABSTRACT

Objective: The lungs are uniquely exposed to the external environment. Sand and dust exposures in desert regions are common among deployed soldiers. A significant number of Veterans deployed to the Middle East report development of respiratory disorders and diseases.Materials and methods: Sand collected from Fallujah, Iraq and Kandahar, Afghanistan combat zones was analyzed and compared to a sand sample collected from an historic United States (U.S.) battle region (Fort Johnson, James Island, SC, Civil War battle site). Sand samples were analyzed to determine the physical and elemental characteristics that may have the potential to contribute to development of respiratory disease.Results: Using complementary scanning electron microscopy (SEM) imaging and analysis, and inductively coupled plasma mass spectrometry (ICP-MS), it was determined that Iraq sand contained elevated levels of calcium and first row transition metals versus Afghanistan and U.S. sand. Iraq sand particle texture was smooth and round, and particles were considerably smaller than Afghanistan sand. Afghanistan sand was elevated in rare earth metals versus Iraq or U.S. sands and had sharp edge features and larger particle size than Iraq sand.Conclusions: These data demonstrate significant differences in Iraq and Afghanistan sand particle size and characteristics. Middle East sands contained elevated levels of elements that have been associated with respiratory disease versus control site sand, suggesting the potential of sand/dust storm exposure to promote adverse respiratory symptoms. Data also demonstrate the potential for variation based on geographical region or site of exposure. The data generated provide baseline information that will be valuable in designing future exposure studies.


Subject(s)
Metals/analysis , Sand/chemistry , Afghanistan , Armed Conflicts , Iraq , Particle Size , South Carolina , Surface Properties
13.
Front Psychol ; 11: 612366, 2020.
Article in English | MEDLINE | ID: mdl-33424724

ABSTRACT

Neurological diseases, particularly in the context of aging, have serious impacts on quality of life and can negatively affect bone health. The brain-bone axis is critically important for skeletal metabolism, sensory innervation, and endocrine cross-talk between these organs. This review discusses current evidence for the cellular and molecular mechanisms by which various neurological disease categories, including autoimmune, developmental, dementia-related, movement, neuromuscular, stroke, trauma, and psychological, impart changes in bone homeostasis and mass, as well as fracture risk. Likewise, how bone may affect neurological function is discussed. Gaining a better understanding of brain-bone interactions, particularly in patients with underlying neurological disorders, may lead to development of novel therapies and discovery of shared risk factors, as well as highlight the need for broad, whole-health clinical approaches toward treatment.

14.
Stem Cell Res ; 40: 101528, 2019 10.
Article in English | MEDLINE | ID: mdl-31415959

ABSTRACT

The Centers for Disease Control and Prevention, National Birth Defects Study suggests that environmental exposures including maternal thyroid diseases, maternal nicotine use, and use of selective serotonin reuptake inhibitors (SSRIs) may exacerbate incidence and or severity of craniofacial abnormalities including craniosynostosis. Premature fusion of a suture(s) of the skull defines the birth defect craniosynostosis which occurs in 1:1800-2500 births. A proposed mechanism of craniosynostosis is the disruption of proliferation and differentiation of cells in the perisutural area. Here, we hypothesize that pharmacological exposures including excess thyroid hormone, nicotine, and SSRIs lead to an alteration of stem cells within the sutures resulting in premature fusion. In utero exposure to nicotine and citalopram (SSRI) increased the risk of premature suture fusion in a wild-type murine model. Gli1+ stem cells were reduced, stem cell populations were depleted, and homeostasis of the suture mesenchyme was altered with exposure. Thus, although these pharmacological exposures can deplete calvarial stem cell populations leading to craniosynostosis, depletion of stem cells is not a unifying mechanism for pharmacological exposure associated craniosynostosis.


Subject(s)
Craniosynostoses/etiology , Nicotine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Stem Cells/drug effects , Thyroid Hormones/pharmacology , Animals , Citalopram/pharmacology , Culture Media/chemistry , Down-Regulation/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Skull/anatomy & histology , Skull/diagnostic imaging , Skull/growth & development , Stem Cells/metabolism , Stem Cells/pathology , Thyroxine/pharmacology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
15.
Front Psychiatry ; 10: 230, 2019.
Article in English | MEDLINE | ID: mdl-31068843

ABSTRACT

Physiological responses to psychological stressors are protective in acute fight or flight situations; however, there is increasing evidence suggesting the detrimental impact of chronic psychological stress on disease. Chronic stress has been associated with inflammation, poor prognosis, increased morbidity, and poor outcome in many diseases including atherosclerosis, cancer, and pulmonary disease. Given the systemic impact of stress, and the role of the hematopoietic system as a rapid responder to homeostatic insults, we hypothesized that early blood profile changes and biochemical alterations could be detected in a model of chronic stress. To test this hypothesis, a variation of the chronic unpredictable stress (CUS) model was employed. Following 10 days of CUS, C57BL/6 mice exhibited a chronic-stress-associated corticosterone profile. Complete blood count (CBC) revealed mild normochromic, normocytic anemia, and reduced monocyte and lymphocyte count. Serum analysis demonstrated hypoferremia with unchanged total iron binding capacity and serum ferritin levels. These findings are consistent with clinical diagnostic parameters for anemia of chronic disease and indicate that CUS results in significant changes in blood and serum biochemical profile in C57BL/6 mice. These studies identify early changes in blood parameters in response to CUS and identify hematopoietic and biochemical alterations that are often associated with increased morbidity in patients experiencing chronic-stress-associated mental health disease.

16.
Front Psychiatry ; 10: 200, 2019.
Article in English | MEDLINE | ID: mdl-31024360

ABSTRACT

The significant biochemical and physiological effects of psychological stress are beginning to be recognized as exacerbating common diseases, including osteoporosis. This review discusses the current evidence for psychological stress-associated mental health disorders as risk factors for osteoporosis, the mechanisms that may link these conditions, and potential implications for treatment. Traditional, alternative, and adjunctive therapies are discussed. This review is not intended to provide therapeutic recommendations, but, rather, the goal of this review is to delineate potential interactions of psychological stress and osteoporosis and to highlight potential multi-system implications of pharmacological interventions. Review of the current literature identifies several potentially overlapping mechanistic pathways that may be of interest (e.g., glucocorticoid signaling, insulin-like growth factor signaling, serotonin signaling) for further basic and clinical research. Current literature also supports the potential for cross-effects of therapeutics for osteoporosis and mental health disorders. While studies examining a direct link between osteoporosis and chronic psychological stress are limited, the studies reviewed herein suggest that a multi-factorial, personalized approach should be considered for improved patient outcomes in populations experiencing psychological stress, particularly those at high-risk for development of osteoporosis.

17.
Mediators Inflamm ; 2019: 1648614, 2019.
Article in English | MEDLINE | ID: mdl-31015794

ABSTRACT

Chronic inflammation is evident in the adipose tissue and periphery of patients with obesity, as well as mouse models of obesity. T cell subsets in obese adipose tissue are skewed towards Th1- and Th17-associated phenotypes and their secreted cytokines contribute to obesity-associated inflammation. Our lab recently identified a novel, myeloid-derived CD45+DDR2+ cell subset that modulates T cell activity. The current study sought to determine how these myeloid-derived CD45+DDR2+ cells are altered in the adipose tissue and peripheral blood of preobese mice and how this population modulates T cell activity. C57BL/6 mice were fed with a diet high in milkfat (60%·kcal, HFD) ad libitum until a 20% increase in total body weight was reached, and myeloid-derived CD45+DDR2+ cells and CD4+ T cells in visceral adipose tissue (VAT), mammary gland-associated adipose tissue (MGAT), and peripheral blood (PB) were phenotypically analyzed. Also analyzed was whether mediators from MGAT-primed myeloid-derived CD45+DDR2+ cells stimulate normal CD4+ T cell cytokine production. A higher percentage of myeloid-derived CD45+DDR2+ cells expressed the activation markers MHC II and CD80 in both VAT and MGAT of preobese mice. CD4+ T cells were preferentially skewed towards Th1- and Th17-associated phenotypes in the adipose tissue and periphery of preobese mice. In vitro, MGAT from HFD-fed mice triggered myeloid-derived CD45+DDR2+ cells to induce CD4+ T cell IFN-γ and TNF-α production. Taken together, this study shows that myeloid-derived CD45+DDR2+ cells express markers of immune activation and suggests that they play an immune modulatory role in the adipose tissue of preobese mice.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/metabolism , CD4-Positive T-Lymphocytes/metabolism , Diet, High-Fat/adverse effects , Discoidin Domain Receptor 2/metabolism , Leukocyte Common Antigens/metabolism , Animals , Cells, Cultured , Female , Flow Cytometry , Mice , Mice, Inbred C57BL
18.
Sci Rep ; 9(1): 3805, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846819

ABSTRACT

Despite the link between adverse birth outcomes due to pre- and peri-natal nicotine exposure, research suggests 11% of US women continue to smoke or use alternative nicotine products throughout pregnancy. Maternal smoking has been linked to incidence of craniofacial anomalies. We hypothesized that pre-natal nicotine exposure may directly alter craniofacial development independent of the other effects of cigarette smoking. To test this hypothesis, we administered pregnant C57BL6 mice drinking water supplemented with 0, 50, 100 or 200 µg/ml nicotine throughout pregnancy. On postnatal day 15 pups were sacrificed and skulls underwent micro-computed tomography (µCT) and histological analyses. Specific nicotinic acetylcholine receptors, α3, α7, ß2, ß4 were identified within the calvarial growth sites (sutures) and centers (synchondroses). Exposing murine calvarial suture derived cells and isotype cells to relevant circulating nicotine levels alone and in combination with nicotinic receptor agonist and antagonists resulted in cell specific effects. Most notably, nicotine exposure increased proliferation in calvarial cells, an effect that was modified by receptor agonist and antagonist treatment. Currently it is unclear what component(s) of cigarette smoke is causative in birth defects, however these data indicate that nicotine alone is capable of disrupting growth and development of murine calvaria.


Subject(s)
Nicotine/pharmacology , Prenatal Exposure Delayed Effects/diagnostic imaging , Receptors, Nicotinic/metabolism , Skull/drug effects , Animals , Female , Mice , Pregnancy , Skull/diagnostic imaging , Skull/metabolism , X-Ray Microtomography
19.
J Comp Eff Res ; 8(6): 431-440, 2019 04.
Article in English | MEDLINE | ID: mdl-30855179

ABSTRACT

AIM: To evaluate the comparative risk of hip fracture or osteoporosis among US Veterans based on selective serotonin reuptake inhibitor (SSRI) exposure. PATIENTS & METHODS: A retrospective cohort study of eligible US Veterans Health Administration patients enrolled in 2003-2004 was performed to examine SSRIs' 2-, 5- and 10-year impact on bone health using multiple logistic regression. RESULTS: Veterans on SSRIs were found to be 56.7% more likely over a 10-year period to suffer a hip fracture (risk ratio: 1.567; 95% CI: 1.464-1.676) and 34.6% more likely to develop osteoporosis (risk ratio: 1.346; 95% CI: 1.319-1.374) when compared with those who were SSRI naive. CONCLUSION: SSRI usage was associated with greater risk of hip fracture and osteoporosis over a 10-year period in the veteran population, with similar effect sizes to smaller studies.


Subject(s)
Hip Fractures/epidemiology , Osteoporosis/epidemiology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Veterans , Adult , Aged , Comparative Effectiveness Research , Female , Humans , Logistic Models , Male , Middle Aged , Retrospective Studies , Risk Factors , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/adverse effects , United States , Young Adult
20.
Am J Cancer Res ; 9(1): 145-159, 2019.
Article in English | MEDLINE | ID: mdl-30755818

ABSTRACT

The scaffold/adaptor growth factor receptor bound 2 (GRB2)-associated binding protein 2 (GAB2) is frequently amplified and/or overexpressed in primary high-grade serous ovarian cancers (HGSOCs). Here we investigate a novel treatment strategy by targeting SHP2 and PI3K signaling in HGSOCs with GAB2 amplification/overexpression (GAB2High). The expression of GAB2 was analyzed in primary HGSOCs and ovarian cancer cell lines. In vitro and in vivo assays were performed to demonstrate the effect of SHP2 and PI3K-mediated GAB2High HGSOC progression. Analysis of gene expression data reveals that primary GAB2High HGSOCs are associated with increased ERBB, RAS, and MAPK activity signatures. Inhibition of SHP2 by an allosteric inhibitor SHP099 selectively inhibits ERK1/2 activity, proliferation, and survival of GAB2High ovarian cancer cell lines. Treatment with SHP099 has a synergistic effect with BKM120, a pan-class I PI3K inhibitor, at suppressing proliferation and survival of GAB2High ovarian cancer cells in vitro and in vivo by more effectively activating both BIM and BAD and inhibiting c-MYC compared with individual inhibitor. Our findings identify an important role of SHP2 in promoting proliferation and survival of GAB2High ovarian cancer cells, and combinatorial SHP2 and PI3K inhibition may be a promising therapeutic approach for such cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...