Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 124: 109497, 2024 02.
Article in English | MEDLINE | ID: mdl-37875228

ABSTRACT

Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Omega-3 , Multiple Sclerosis , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Multiple Sclerosis/drug therapy , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Models, Theoretical
2.
Nutr Neurosci ; 27(1): 74-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36576232

ABSTRACT

Objectives: The high-salt diet (HSD) has been associated with cognitive dysfunction by attacking the cerebral microvasculature, through an adaptive response, initiated in the intestine and mediated by Th17 cells. In the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), it has been described that NaCl causes an increase in T cell infiltration in the central nervous system. NaCl also promotes macrophage response and Th17 cell differentiation, worsening the course of the disease. HSD may trigger an activation of the immune system and enhance inflammation. However, certain studies not only do not support this possibility, but support the opposite, as the effect of salt on immune cells may not necessarily be pathogenic. Therefore, this study aimed to evaluate the effect of an over intake of salt in rats with EAE, based on the clinical course, oxidative stress, markers of inflammation and the gut dysbiosis.Methods: 15 Dark Agouti rats were used, which were divided into control group, EAE group and EAE + NaCl group. Daily 0.027 g of NaCl dissolved in 300 µl of H2O was administered through a nasogastric tube for 51 days.Results: NaCl administration produced an improvement in clinical status and a decrease in biomarkers of oxidative stress, inflammation, and dysbiosis.Conclusion: The underlying mechanism by which NaCl causes these effects could involve the renin-angiotensin-aldosterone system (RAAS), which is blocked by high doses of salt.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Mice , Multiple Sclerosis/complications , Sodium Chloride/adverse effects , Dysbiosis , Inflammation/complications , Oxidative Stress , Sodium Chloride, Dietary/adverse effects , Mice, Inbred C57BL
3.
Neuroscience ; 529: 116-128, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37595941

ABSTRACT

Oxidative stress is heavily involved in several pathological features of Multiple Sclerosis (MS), such as myelin destruction, axonal degeneration, and inflammation. Different therapies have been shown to reduce the oxidative stress that occurs in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Some of these therapies are transcranial magnetic stimulation (TMS), extra virgin olive oil (EVOO) and S-allyl cysteine (SAC). This study aims to test the antioxidant effect of these three therapies, to compare the efficacy of SAC versus TMS and EVOO, and to analyze the effect of combining SAC + TMS and SAC and EVOO. Seventy Dark Agouti rats were used, which were divided into Control group; Vehicle group; Mock group; SAC; EVOO; TMS; SAC + EVOO; SAC + TMS; EAE; EAE + SAC; EAE + EVOO; EAE + TMS; EAE + SAC + EVOO; EAE + SAC + TMS. The TMS consisted of an oscillatory magnetic field in the form of a sine wave with a frequency of 60 Hz and an amplitude of 0.7mT (EL-EMF) applied for two hours in the morning, once a day, five days a week. SAC was administered at a dose of 50 mg/kg body weight, orally daily, five days a week. EVOO represented 10% of their calorie intake in the total standard daily diet of rats AIN-93G. All treatments were maintained for 51 days. TMS, EVOO and SAC, alone or in combination, reduce oxidative stress, increasing antioxidant defenses and also lowering the clinical score. Combination therapies do not appear to be more potent than individual therapies against the oxidative stress of EAE or its clinical symptoms.

4.
Ultrastruct Pathol ; 46(5): 401-412, 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-35994513

ABSTRACT

In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Acid Phosphatase , Animals , Desmin , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Rats , Transcranial Magnetic Stimulation
5.
Respir Res ; 23(1): 163, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729539

ABSTRACT

BACKGROUND: Hypoxia can reduce the levels of soluble receptor for advanced glycation end-products (sRAGE), a new anti-inflammatory biomarker of COPD. We assessed sRAGE in patients with hypoxia-related diseases such as COPD, OSA and OSA-COPD overlap. METHODS: Plasma levels of sRAGE were measured in 317 subjects at baseline (57 heathy nonsmokers [HNS], 84 healthy smokers [HS], 79 OSA, 62 COPD and 35 OSA-COPD overlap patients) and in 294 subjects after one year of follow-up (50 HNS, 74 HS, 77 OSA, 60 COPD and 33 overlap). RESULTS: After adjusting for age, sex, smoking status and body mass index, sRAGE levels showed a reduction in OSA (- 12.5%, p = 0.005), COPD (- 14.8%, p < 0.001) and OSA-COPD overlap (- 12.3%, p = 0.02) compared with HNS. There were no differences when comparing sRAGE plasma levels between overlap patients and those with OSA or COPD alone. At follow-up, sRAGE levels did not change significantly in healthy subjects, COPD and OSA or OSA-COPD overlap nontreated with continuous positive airway pressure (CPAP). Moreover, in patients with OSA and OSA-COPD overlap who were treated with CPAP, sRAGE increased significantly. CONCLUSIONS: The levels of sRAGE are reduced in COPD and OSA. Treatment with CPAP appears to improve sRAGE levels in patients with OSA who also had COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sleep Apnea, Obstructive , Antigens, Neoplasm , Continuous Positive Airway Pressure , Humans , Hypoxia/complications , Mitogen-Activated Protein Kinases , Receptor for Advanced Glycation End Products , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/therapy
6.
CNS Neurol Disord Drug Targets ; 21(8): 680-692, 2022.
Article in English | MEDLINE | ID: mdl-34875994

ABSTRACT

BACKGROUND AND OBJECTIVES: Experimental Autoimmune Encephalomyelitis (EAE) in rats closely reproduces Multiple Sclerosis (MS), a disease characterized by neuroinflammation and oxidative stress that also appears to extend to other organs and their compartments. The origin of MS is a matter for discussion, but it would seem that altering certain bacterial populations present in the gut may lead to a proinflammatory condition due to the bacterial Lipopolysaccharides (LPS) in the so-called brain-gut axis. The casein and lactose in milk confer anti-inflammatory properties and immunomodulatory effects. The objectives of this study were to evaluate the effects of administration of casein and lactose on the oxidative damage and the clinical status caused by EAE and to verify whether both casein and lactose had any effect on the LPS and its transport protein -LBP-. METHODS: Twenty male Dark Agouti rats were divided into control rats (control), EAE rats, and EAE rats, to which casein and lactose, EAE+casein, and EAE+lactose, respectively, were administered. Fifty-one days after casein and lactose administration, the rats were sacrificed, and different organs were studied (brain, spinal cord, blood, heart, liver, kidney, small, and large intestine). In the latter, products derived from oxidative stress were studied (lipid peroxides and carbonylated proteins) as well as the glutathione redox system, various inflammation factors (total nitrite, Nuclear Factor-kappa B p65, the Rat Tumour Necrosis Factor-α), and the LPS and LBP values. RESULTS AND CONCLUSION: Casein and lactose administration improved the clinical aspect of the disease at the same time as reducing inflammation and oxidative stress, exerting its action on the glutathione redox system, or increasing GPx levels.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Biomarkers/metabolism , Caseins/metabolism , Caseins/pharmacology , Dysbiosis/drug therapy , Dysbiosis/metabolism , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Glutathione/metabolism , Inflammation/metabolism , Lactose/metabolism , Lactose/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Male , Models, Theoretical , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Oxidative Stress , Rats , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...