Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712123

ABSTRACT

Tumor cell lines with elevated chromosome numbers frequently have correlated elevations of Mps1 expression and these tumors are more dependent on Mps1 activity for their survival than control cell lines. Mps1 is a conserved kinase involved in controlling aspects of chromosome segregation in mitosis and meiosis. The mechanistic explanation for the Mps1-addiction of aneuploid cells is unknown. To address this question, we explored Mps1-dependence in yeast cells with increased sets of chromosomes. These experiments revealed that in yeast, increasing ploidy leads to delays and failures in orienting chromosomes on the mitotic spindle. Yeast cells with elevated numbers of chromosomes proved vulnerable to reductions of Mps1 activity. Cells with reduced Mps1 activity exhibit an extended prometaphase with longer spindles and delays in orienting the chromosomes. One known role of Mps1 is in recruiting Bub1 to the kinetochore in meiosis. We found that the Mps1-addiction of polyploid yeast cells is due in part to its role in Bub1 recruitment. Together, the experiments presented here demonstrate that increased ploidy renders cells more dependent on Mps1 for orienting chromosomes on the spindle. The phenomenon described here may be relevant in understanding why hyper-diploid cancer cells exhibit elevated reliance on Mps1 expression for successful chromosome segregation.

2.
Mol Biol Cell ; 32(10): 1020-1032, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33788584

ABSTRACT

In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented-attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.


Subject(s)
Chromosomes/physiology , Prometaphase/physiology , Protein Serine-Threonine Kinases/physiology , Saccharomyces cerevisiae Proteins/physiology , Cell Polarity , Chromosome Pairing , Kinetochores/physiology , Microtubules/physiology , Mutation , Prometaphase/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL
...