Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 65(1): 193-203, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12632390

ABSTRACT

The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure.


Subject(s)
Alloys/standards , Materials Testing/methods , Alloys/analysis , Elements , Hot Temperature , Nickel/analysis , Surface Properties , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...