Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1352116, 2024.
Article in English | MEDLINE | ID: mdl-38445263

ABSTRACT

Background: Males with multiple sclerosis (MS) have a higher risk for disability progression than females, but the reasons for this are unclear. Objective: We hypothesized that potential differences in TSPO-expressing microglia between female and male MS patients could contribute to sex differences in clinical disease progression. Methods: The study cohort consisted of 102 MS patients (mean (SD) age 45.3 (9.7) years, median (IQR) disease duration 12.1 (7.0-17.2) years, 72% females, 74% relapsing-remitting MS) and 76 age- and sex-matched healthy controls. TSPO-expressing microglia were measured using the TSPO-binding radioligand [11C](R)-PK11195 and brain positron emission tomography (PET). TSPO-binding was quantified as distribution volume ratio (DVR) in normal-appearing white matter (NAWM), thalamus, whole brain and cortical gray matter (cGM). Results: Male MS patients had higher DVRs compared to female patients in the whole brain [1.22 (0.04) vs. 1.20 (0.02), p = 0.002], NAWM [1.24 (0.06) vs. 1.21 (0.05), p = 0.006], thalamus [1.37 (0.08) vs. 1.32 (0.02), p = 0.008] and cGM [1.25 (0.04) vs. 1.23 (0.04), p = 0.028]. Similarly, healthy men had higher DVRs compared to healthy women except for cGM. Of the studied subgroups, secondary progressive male MS patients had the highest DVRs in all regions, while female controls had the lowest DVRs. Conclusion: We observed higher TSPO-binding in males compared to females among people with MS and in healthy individuals. This sex-driven inherent variability in TSPO-expressing microglia may predispose male MS patients to greater likelihood of disease progression.

2.
J Neurol Neurosurg Psychiatry ; 94(9): 698-706, 2023 09.
Article in English | MEDLINE | ID: mdl-37130728

ABSTRACT

BACKGROUND: Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS: Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS: 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS: Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.


Subject(s)
Multiple Sclerosis , Humans , Biomarkers , Brain/pathology , Intermediate Filaments/metabolism , Microglia/metabolism , Multiple Sclerosis/metabolism , Neurofilament Proteins , Positron-Emission Tomography , Receptors, GABA/metabolism
3.
Article in English | MEDLINE | ID: mdl-33293460

ABSTRACT

OBJECTIVE: To evaluate to which extent serum neurofilament light chain (NfL) increase is related to diffusion tensor imaging-MRI measurable diffuse normal-appearing white matter (NAWM) damage in MS. METHODS: Seventy-nine patients with MS and 10 healthy controls underwent MRI including diffusion tensor sequences and serum NfL determination by single molecule array (Simoa). Fractional anisotropy and mean, axial, and radial diffusivities were calculated within the whole and segmented (frontal, parietal, temporal, occipital, cingulate, and deep) NAWM. Spearman correlations and multiple regression models were used to assess the associations between diffusion tensor imaging, volumetric MRI data, and NfL. RESULTS: Elevated NfL correlated with decreased fractional anisotropy and increased mean, axial, and radial diffusivities in the entire and segmented NAWM (for entire NAWM ρ = -0.49, p = 0.005; ρ = 0.49, p = 0.005; ρ = 0.43, p = 0.018; and ρ = 0.48, p = 0.006, respectively). A multiple regression model examining the effect of diffusion tensor indices on NfL showed significant associations when adjusted for sex, age, disease type, the expanded disability status scale, treatment, and presence of relapses. In the same model, T2 lesion volume was similarly associated with NfL. CONCLUSIONS: Our findings suggest that elevated serum NfL in MS results from neuroaxonal damage both within the NAWM and focal T2 lesions. This pathologic heterogeneity ought to be taken into account when interpreting NfL findings at the individual patient level.


Subject(s)
Brain/pathology , Multiple Sclerosis/pathology , Neurofilament Proteins/blood , White Matter/pathology , Adult , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Multiple Sclerosis/blood
4.
Article in English | MEDLINE | ID: mdl-32123046

ABSTRACT

OBJECTIVE: To evaluate in vivo the co-occurrence of microglial activation and microstructural white matter (WM) damage in the MS brain and to examine their association with clinical disability. METHODS: 18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI (cMRI) were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial, and radial (RD) diffusivities were calculated within the whole normal-appearing WM (NAWM) and segmented NAWM regions appearing normal in cMRI. Fifty-five patients with MS and 15 healthy controls (HCs) were examined. RESULTS: Microstructural damage was observed in the NAWM of the MS brain. DTI parameters of patients with MS were significantly altered in the NAWM compared with an age- and sex-matched HC group: mean FA was decreased, and MD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p < 0.05 for all correlations; p < 0.01 for RD in the temporal NAWM). Both compromised WM integrity and increased microglial activation in the NAWM correlated significantly with higher clinical disability measured with the Expanded Disability Status Scale score. CONCLUSIONS: Widespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI allow in vivo evaluation of widespread MS pathology not visible using cMRI.


Subject(s)
Diffusion Tensor Imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Positron-Emission Tomography , White Matter/pathology , Adult , Female , Humans , Male , Microglia , Middle Aged , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Receptors, GABA , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...