Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Osteoarthritis Cartilage ; 15(10): 1141-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17513137

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) is one of the most potential methods for non-invasive diagnosis of cartilage disorders. Several methods have been established for clinical use; T(1) relaxation time imaging with negatively charged contrast agent (delayed gadolinium enhanced MRI of cartilage, dGEMRIC) has been shown to be sensitive to proteoglycan (PG) content while T(2) relaxation time has been demonstrated to express properties of the collagen fibril network. The use of native T(1) relaxation time has received less attention. OBJECTIVE: In the present study, magnetic resonance (MR) parameters of different types of patellar cartilage were studied with respect to the mechanical properties of the tissue. The general usefulness of the parameters to predict mechanical properties was investigated using cartilage from different species and stages of maturation. METHODS: dGEMRIC, T(2) and native T(1) relaxation times of healthy mature human, juvenile porcine and juvenile bovine articular cartilage samples were measured at 9.4T at 25 degrees C. Mechanical properties (Young's modulus and dynamic modulus) of the samples were measured in unconfined compression using a material testing device. The relationships between MRI and mechanical parameters and potential differences between different types of tissues were tested statistically. RESULTS: Significant, but varying relationships were established between T(1) or T(2) relaxation time and mechanical properties, depending on tissue type. The values of mechanical parameters were in line with the results previously reported in the literature. Unexpectedly, dGEMRIC showed no statistically significant association with the mechanical properties. Variation in the assumption of native T(1) value did not induce significant differences in the calculated contrast agent concentration, and consequently did not affect prediction of mechanical properties. CONCLUSION: For patellae, a complex variation in the relationships between T(2) and mechanical properties in different groups was revealed. The results support the conclusion that juvenile animal tissue, exhibiting a highly complex collagenous architecture, may not always serve as a realistic model for mature human tissue with a typical three-zone network organization, and other than bulk metrics are required for the analysis of cartilage T(2). As the multilayered collagen network can strongly control the mechanical characteristics of juvenile tissue, it may mask the mechanical role of PGs and explain why dGEMRIC could not predict mechanical parameters in patellar cartilage.


Subject(s)
Cartilage, Articular/physiology , Knee Joint/physiology , Magnetic Resonance Imaging/methods , Patella/physiology , Age Factors , Animals , Biomechanical Phenomena , Cadaver , Cattle , Humans , Statistics as Topic , Swine
2.
Eur Cell Mater ; 13: 46-55; discussion 55, 2007 Apr 03.
Article in English | MEDLINE | ID: mdl-17407053

ABSTRACT

In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA) earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g., arising from collagen network damage or proteoglycan depletion. We have recently investigated several novel quantitative biophysical methods, including ultrasound indentation, quantitative ultrasound techniques and magnetic resonance imaging, for diagnosing the degenerative changes of articular cartilage, typical for OA. In this study, the combined results of these novel diagnostic methods were compared with histological (Mankin score, MS), compositional (proteoglycan, collagen and water content) and mechanical (dynamic and equilibrium moduli) reference measurements of the same bovine cartilage samples. Receiver operating characteristics (ROC) analysis was conducted to judge the diagnostic performance of each technique. Indentation and ultrasound techniques provided the most sensitive measures to differentiate samples of intact appearance (MS=0) from early (13) degeneration. Furthermore, these techniques were good predictors of tissue composition and mechanical properties. The specificity and sensitivity analyses revealed that the mechano-acoustic methods, when further developed for in vivo use, may provide more sensitive probes for OA diagnostics than the prevailing qualitative X-ray and arthroscopic techniques. Noninvasive quantitative MRI measurements showed slightly lower diagnostic performance than mechano-acoustic techniques. The compared methods could possibly also be used for the quantitative monitoring of success of cartilage repair.


Subject(s)
Cartilage Diseases/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoarthritis/diagnostic imaging , Ultrasonography/methods , Animals , Body Water/metabolism , Cartilage Diseases/pathology , Cartilage Diseases/physiopathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cattle , Collagen/analysis , Collagen/metabolism , Extracellular Matrix/metabolism , Magnetic Resonance Imaging/trends , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Predictive Value of Tests , Proteoglycans/analysis , Proteoglycans/metabolism , Regeneration/physiology , Stress, Mechanical , Tensile Strength/physiology , Wound Healing/physiology
3.
Osteoarthritis Cartilage ; 14(12): 1265-71, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16843689

ABSTRACT

OBJECTIVE: The magnetic resonance imaging (MRI) parameter T(2) relaxation time has been shown to be sensitive to the collagen network architecture of articular cartilage. The aim of the study was to investigate the agreement of T(2) relaxation time mapping and polarized light microscopy (PLM) for the determination of histological properties (i.e., zone and fibril organization) of articular cartilage. METHODS: T(2) relaxation time was determined at 9.4 T field strength in healthy adult human, juvenile bovine and juvenile porcine patellar cartilage, and related to collagen anisotropy and fibril angle as measured by quantitative PLM. RESULTS: Both T(2) and PLM revealed a mutually consistent but varying number of collagen-associated laminae (3, 3-5 or 3-7 laminae in human, porcine and bovine cartilage, respectively). Up to 44% of the depth-wise variation in T(2) was accounted for by the changing anisotropy of collagen fibrils, confirming that T(2) contrast of articular cartilage is strongly affected by the collagen fibril anisotropy. A good correspondence was observed between the thickness of T(2)-laminae and collagenous zones as determined from PLM anisotropy measurements (r=0.91, r=0.95 and r=0.91 for human, bovine and porcine specimens, respectively). CONCLUSIONS: According to the present results, T(2) mapping is capable of detecting histological differences in cartilage collagen architecture among species, likely to be strongly related to the differences in maturation of the tissue. This diversity in the MRI appearance of healthy articular cartilage should also be recognized when using juvenile animal tissue as a model for mature human cartilage in experimental studies.


Subject(s)
Aging/pathology , Cartilage, Articular/anatomy & histology , Collagen/metabolism , Knee Joint/pathology , Adult , Aged , Aging/metabolism , Animals , Anisotropy , Cartilage, Articular/chemistry , Cattle , Fibril-Associated Collagens/metabolism , Humans , Knee Joint/chemistry , Magnetic Resonance Imaging/methods , Microscopy, Polarization , Middle Aged , Patella/anatomy & histology , Patella/chemistry , Species Specificity , Swine
4.
J Orthop Res ; 24(3): 366-74, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16479569

ABSTRACT

Quantitative magnetic resonance imaging (MRI) techniques have been developed for noninvasive assessment of the structure of articular cartilage. T2 relaxation time is sensitive to the integrity and orientation of the collagen network, while T1 relaxation time in presence of Gd-DTPA2- (dGEMRIC) reflects the proteoglycan content of cartilage. In the present study, human patellar cartilage samples were investigated in vitro to determine the ability of MRI parameters to reveal topographical variations and to predict mechanical properties of cartilage at two different field strengths. T2 and dGEMRIC measurements at 1.5 T and 9.4 T were correlated with the static and dynamic compressive moduli at six anatomical locations of the patellar surface. Statistically significant linear correlations were observed between MRI and mechanical parameters at both field strengths, especially between T2 and Young's modulus. No significant difference was found between the T2 measurements at different field strengths in predicting mechanical properties of the tissue. Topographical variation of T2 values at both field strengths was similar to that of Young's moduli. The current results demonstrate the feasibility of quantitative MRI, particularly T2 mapping, to reflect the mechanical properties of human patellar cartilage at both field strengths.


Subject(s)
Cartilage, Articular/physiology , Knee Joint/physiology , Magnetic Resonance Imaging/methods , Patella/physiology , Feasibility Studies , Female , Gadolinium DTPA , Humans , Male , Middle Aged , Stress, Mechanical , Weight-Bearing/physiology
5.
Osteoarthritis Cartilage ; 14(3): 258-63, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16288971

ABSTRACT

OBJECTIVE: Arthroscopy offers qualitative means to evaluate the surface of articular cartilage. However, possible degeneration of the deep cartilage and subchondral bone remains undetected. High frequency ultrasound imaging is an advanced cartilage evaluation method which is conceivable to arthroscopic use and brings diagnostic information also from deeper cartilage and subchondral bone. DESIGN: In this study, we characterized spontaneous repair of porcine cartilage in situ with quantitative 2D-ultrasound imaging. At the age of 7-8 months, a cartilage lesion (diameter 6mm, not penetrating into subchondral bone) was created on the lateral facet of the right femoral trochlea (n=8). The animals were sacrificed 3 months after the surgery. The lesion site, adjacent cartilage and the corresponding control area at the contralateral (left) knee were imaged in situ with 20 MHz ultrasound. Ultrasound reflection coefficients were determined from the cartilage surface (R) and from the cartilage-bone interface (R(bone)). Microtopography of the articular surface was quantified by calculating ultrasound roughness index (URI) parameter from the ultrasonically determined surface profile. RESULTS: Lesion site was spontaneously filled with visually cartilage-like soft tissue with smooth surface. However, ultrasonic images and histological analyses revealed erosion of subchondral bone under the lesion site. Ultrasound reflection (R) at the surface of the spontaneously repaired tissue was significantly lower (-73.5+/-7.6%, P<0.05) than at the surface of intact cartilage. R(bone) was lowest at the lesion site. The surface roughness of spontaneously repaired cartilage was significantly higher than that of the intact tissue (44.0+/-26.0 microm vs 7.5+/-2.3 microm, P<0.05). CONCLUSIONS: Quantitative ultrasound parameters offered diagnostic information revealing impaired structural integrity of the spontaneously repaired porcine cartilage and subchondral bone. These changes are not detectable by traditional arthroscopic means.


Subject(s)
Cartilage, Articular/physiopathology , Osteoarthritis, Knee/physiopathology , Wound Healing , Animals , Arthroscopy , Cartilage, Articular/diagnostic imaging , Femur/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Swine , Ultrasonography
6.
Equine Vet J ; 37(5): 462-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16163950

ABSTRACT

REASONS FOR PERFORMING STUDY: No quantitative data currently exist on the relationship of the occurrence of cartilage degeneration and changes in site-specific biomechanical properties in the metacarpophalangeal (MCP) joint in the horse. OBJECTIVES: To gain insight into the biomechanical consequences of cartilage deterioration at 2 differently loaded sites on the proximal articular surface of the proximal phalanx (P1). HYPOTHESIS: Static and dynamic stiffness of articular cartilage decreases significantly in degenerated cartilage. METHODS: Cartilage degeneration index (CDI) values were measured at the lateral dorsal margin (Site 1), lateral central fovea (Site 2) and entire joint surface of P1 (CDIP1) in 30 horses. Group 1 contained joints without (CDIP1 values <25 %, n = 22) and Group 2 joints with (CDIP1 values >25 %, n = 8) signs of cartilage degeneration. Cartilage thickness at Sites 1 and 2 was measured using ultrasonic and needle-probe techniques. Osteochondral plugs were drilled out from Sites 1 and 2 and subsequently tested biomechanically in indentation geometry. Young's modulus at equilibrium and dynamic modulus were determined. RESULTS: Cartilage thickness values were not significantly different between the 2 groups and sites. Young's modulus at Site 1 was significantly higher in Group 1 than in Group 2; at Site 2, the difference was not significant. Dynamic modulus values were significantly higher in Group 1 than in Group 2 at both sites. CONCLUSIONS: Degenerative cartilage changes are clearly related to loss of stiffness of the tissue. Absolute changes in cartilage integrity in terms of CDI are greatest at the joint margin, but concomitant changes are also present at the centre, with a comparable decrease of the biomechanical moduli at the 2 sites. Therefore, significant cartilage degradation at the joint margin not only reflects local deterioration of biomechanical properties, but is also indicative of the functional quality in the centre. POTENTIAL RELEVANCE: These findings may be important for improving prognostication and developing preventative measures.


Subject(s)
Cartilage Diseases/veterinary , Cartilage, Articular/pathology , Horse Diseases/pathology , Metacarpophalangeal Joint/pathology , Animals , Biomechanical Phenomena , Cadaver , Cartilage Diseases/diagnosis , Cartilage Diseases/pathology , Cartilage Diseases/physiopathology , Cartilage, Articular/physiology , Cartilage, Articular/physiopathology , Horse Diseases/diagnosis , Horse Diseases/physiopathology , Horses , Metacarpophalangeal Joint/physiology , Metacarpophalangeal Joint/physiopathology , Predictive Value of Tests , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index
7.
Equine Vet J ; 37(2): 148-54, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15779628

ABSTRACT

REASONS FOR PERFORMING STUDY: The concept of functional adapatation of articular cartilage during maturation has emerged from earlier biochemical research. However, articular cartilage has principally a biomechanical function governed by joint loading. OBJECTIVES: To verify whether the concept of functional adaptation can be confirmed by direct measurement of biomechanical properties of cartilage. HYPOTHESIS: Fetuses have homogeneous (i.e. site-independent) cartilage with regard to biomechanical properties. During growth and development to maturity, the biomechanical characteristics adapt according to functional (loading) demands, leading to distinct, site-dependent biomechanical heterogeneity of articular cartilage. METHODS: Osteochondral plugs were drilled out of the surface at 2 differently loaded sites (Site 1: intermittent impact-loading during locomotion, Site 2: low-level constant loading during weightbearing) of the proximal articular cartilage surface of the proximal phalanx in the forelimb from stillborn foals (n = 8), horses of age 5 (n = 9) and 18 months (n = 9) and mature horses (n = 13). Cartilage thickness was measured using ultrasonic, optical and needle-probe techniques. The osteochondral samples were biomechanically tested in indentation geometry. Young's modulus at equilibrium, dynamic modulus at 1 Hz and the ratios of these moduli values between Sites 1 and 2 were calculated. Age and site effects were evaluated statistically using ANOVA tests. The level of significance was set at P<0.05. RESULTS: Fetal cartilage was significantly thicker compared to the other ages with no further age-dependent differences in cartilage thickness from age 5 months onwards. Young's modulus stayed constant at Site 1, whereas at Site 2 there was a gradual, statistically significant increase in modulus during maturation. Values of dynamic modulus at both Sites 1 and 2 were significantly higher in the fetus and decreased after birth. Values for both moduli were significantly different between Sites 1 and 2 from age 18 months onwards. The ratio of values between Sites 1 and 2 for Young's modulus and dynamic modulus showed a gradual decrease from approximately 1.0 at birth to 0.5-0.6 in the mature horse. At age 18 months, all values were comparable to those in the mature horse. CONCLUSIONS: In line with the concept of functional adaptation, the neonate is born with biomechanically 'blank' or homogeneous cartilage. Functional adaptation of biomechanical properties takes place early in life, resulting in cartilage with a distinct heterogeneity in functional characteristics. At age 18 months, functional adaptation, as assessed by the biomechanical characteristics, has progressed to a level comparable to the mature horse and, after this age, no major adaptations seem to occur. POTENTIAL RELEVANCE: Throughout life, different areas of articular cartilage are subjected to different types of loading. Differences in loading can adequately be met only when the tissue is biomechanically adapted to withstand these different loading conditions without injury. This process of functional adaptation starts immediately after birth and is completed well before maturity. This makes the factor of loading at a young age a crucial variable, and emphasises the necessity to optimise joint loading during early life in order to create an optimal biomechanical quality of articular cartilage, which may well turn out to be the best prevention for joint injury later in life.


Subject(s)
Adaptation, Physiological , Cartilage, Articular/physiology , Horses/physiology , Age Factors , Aging/physiology , Analysis of Variance , Animals , Animals, Newborn , Biomechanical Phenomena , Cadaver , Cartilage, Articular/anatomy & histology , Cartilage, Articular/growth & development , Fetus , Horses/anatomy & histology , Horses/growth & development , Weight-Bearing
8.
J Orthop Res ; 22(3): 557-64, 2004 May.
Article in English | MEDLINE | ID: mdl-15099635

ABSTRACT

Quantitative magnetic resonance imaging (MRI) techniques have earlier been developed to characterize the structure and composition of articular cartilage. Particularly, Gd-DTPA(2-)-enhanced T1 imaging is sensitive to cartilage proteoglycan content, while T2 relaxation time mapping is indicative of the integrity and arrangement of the collagen network. However, the ability of these techniques to detect early osteoarthrotic changes in cartilage has not been demonstrated. In this study, normal and spontaneously degenerated bovine patellar cartilage samples (n=32) were investigated in vitro using the aforementioned techniques. For reference, mechanical, histological and biochemical properties of the adjacent tissue were determined, and a grading system, the cartilage quality index (CQI), was used to score the structural and functional integrity of each sample. As cartilage degeneration progressed, a statistically significant increase in the superficial T2 (r=0.494, p<0.05) and a decrease in superficial and bulk T1 in the presence of Gd-DTPA(2-) (r=-0.681 and -0.688 (p<0.05), respectively) were observed. Gd-DTPA(2-)-enhanced T1 imaging served as the best predictor of tissue integrity and accounted for about 50% of the variation in CQI. The present results reveal that changes in the quantitative MRI parameters studied are indicative of structural and compositional alterations as well as the mechanical impairment of spontaneously degenerated articular cartilage.


Subject(s)
Cartilage, Articular/pathology , Collagen/analysis , Gadolinium DTPA , Magnetic Resonance Imaging , Osteoarthritis/pathology , Proteoglycans/analysis , Animals , Cartilage, Articular/physiopathology , Cattle , Osteoarthritis/physiopathology
9.
Osteoarthritis Cartilage ; 11(9): 697-705, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12954241

ABSTRACT

OBJECTIVE: We have previously developed a handheld ultrasound indentation instrument for the diagnosis of cartilage degeneration. The instrument has been demonstrated to be capable of quantifying mechanical and acoustic properties of enzymatically degraded and normal bovine articular cartilage in vitro and in situ. The aim of this study was to investigate the sensitivity of the instrument to distinguish between normal and spontaneously degenerated (e.g., in osteoarthrosis) articular cartilage in vitro. DESIGN: Thirty articular cartilage samples were prepared from the bovine lateral patellae: 19 patellae with different degenerative stages and 11 patellae with visually normal appearance. Cartilage thickness, stiffness (dynamic modulus) and ultrasound reflection from the cartilage surface were measured with the handheld instrument. Subsequently, biomechanical, histological and biochemical reference measurements were conducted. RESULTS: Reproducibility of the measurements with the ultrasound indentation instrument was good. Standardized coefficient of variation was < or =6.1% for thickness, dynamic modulus and reflection coefficient. Linear correlation between the dynamic modulus, measured with the ultrasound indentation instrument, and the reference dynamic modulus was high (r=0.993, n=30, P<0.05). Ultrasound reflection coefficient, as determined from the cartilage surface, showed high linear correlations (typically r(2)>0.64, n=30, P<0.05) with the cartilage composition and histological or mechanical properties. The instrument was superior compared to visual evaluation in detecting tissue degeneration. CONCLUSION: This study indicates that the ultrasound indentation technique and instrument may significantly improve the early diagnosis of cartilage degeneration. The results revealed that visual evaluation is insensitive for estimating the structural and mechanical properties of articular cartilage at the initial stages of degeneration.


Subject(s)
Cartilage, Articular/diagnostic imaging , Osteoarthritis/diagnostic imaging , Animals , Cartilage, Articular/pathology , Cartilage, Articular/physiopathology , Cattle , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Patella/diagnostic imaging , Patella/pathology , Patella/physiopathology , Reproducibility of Results , Stress, Mechanical , Ultrasonography
10.
Biorheology ; 40(1-3): 133-40, 2003.
Article in English | MEDLINE | ID: mdl-12454397

ABSTRACT

Structure and properties of knee articular cartilage are adapted to stresses exposed on it during physiological activities. In this study, we describe site- and depth-dependence of the biomechanical properties of bovine knee articular cartilage. We also investigate the effects of tissue structure and composition on the biomechanical parameters as well as characterize experimentally and numerically the compression-tension nonlinearity of the cartilage matrix. In vitro mechano-optical measurements of articular cartilage in unconfined compression geometry are conducted to obtain material parameters, such as thickness, Young's and aggregate modulus or Poisson's ratio of the tissue. The experimental results revealed significant site- and depth-dependent variations in recorded parameters. After enzymatic modification of matrix collagen or proteoglycans our results show that collagen primarily controls the dynamic tissue response while proteoglycans affect more the static properties. Experimental measurements in compression and tension suggest a nonlinear compression-tension behavior of articular cartilage in the direction perpendicular to articular surface. Fibril reinforced poroelastic finite element model was used to capture the experimentally found compression-tension nonlinearity of articular cartilage.


Subject(s)
Cartilage, Articular/physiology , Knee Joint/physiology , Animals , Biomechanical Phenomena , Cattle , Collagen/physiology , Finite Element Analysis , Stress, Mechanical
11.
Physiol Meas ; 23(3): 491-503, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12214758

ABSTRACT

Fibrillation of articular surface and depletion of proteoglycans are the structural changes related to early osteoarthrosis. These changes make cartilage softer and prone to further degeneration. The aim of the present study was to combine mechanical and acoustic measurements towards quantitative arthroscopic evaluation of cartilage quality. The performance of the novel ultrasound indentation instrument was tested with elastomers and bovine articular cartilage in vitro. The instrument was capable of measuring elastomer thickness (r = 1.000, p < 0.01, n = 8) and dynamic modulus (r = 0.994, p < 0.01, n = 13) reliably. Osteochondral plugs were tested before and after enzymatic degradation of cartilage proteoglycans by trypsin or chondroitinase ABC, and of cartilage collagens by collagenase. Trypsin and collagenase induced a mean decrease of -31.2 +/- 12.3% (+/- SD, p < 0.05) and -22.9 +/- 20.8% (p = 0.08) in dynamic modulus, respectively. Rate of cartilage deformation, i.e. creep rate, increased by +117.8 +/- 71.4% (p < 0.05) and +24.7 +/- 35.1% (p = 0.17) in trypsin and chondroitinase ABC treatments, respectively. Collagenase induced a greater decrease in the ultrasound reflection from the cartilage surface (-54.2 +/- 29.6%, p < 0.05) than trypsin (-17.1 +/- 13.5%, p = 0.08). In conclusion, combined quantitation of tissue modulus, viscoelasticity and ultrasound reflection from the cartilage surface provides a sensitive method to distinguish between normal and degenerated cartilage, and even to discern proteoglycan loss and collagen degradation from each other.


Subject(s)
Cartilage Diseases/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Ultrasonography/instrumentation , Animals , Biomechanical Phenomena , Cartilage Diseases/pathology , Cartilage Diseases/physiopathology , Cartilage, Articular/pathology , Cartilage, Articular/physiopathology , Cattle , Elastomers , Male , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/physiopathology , Sensitivity and Specificity , Ultrasonography/methods
12.
J Biomech ; 35(7): 903-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12052392

ABSTRACT

At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.


Subject(s)
Cartilage, Articular/physiology , Animals , Biomechanical Phenomena , Cattle , Compressive Strength , Elasticity , Femur , Humerus , In Vitro Techniques , Patella , Stress, Mechanical
13.
Biorheology ; 39(1-2): 161-9, 2002.
Article in English | MEDLINE | ID: mdl-12082279

ABSTRACT

Osteoarthrosis is the most important joint disease that threatens health of the musculoskeletal system of elderly people. Today, there is a need for sensitive, quantitative diagnostic methods for successful and early diagnosis of the disorder. In the present study, we aimed at evaluating the applicability of ultrasound for quantitative assessment of cartilage structure and properties. Bovine articular cartilage was investigated both in vitro and in situ using high frequency ultrasound. Cartilage samples were also tested mechanically in vitro to reveal relationships between acoustic and mechanical parameters of the tissue. The collagen organization and proteoglycan content of cartilage samples were mapped, using quantitative polarized light microscopy and digital densitometry, respectively, to reveal their effect on the acoustic properties of tissue. The high frequency pulse-echo ultrasound (20-30 MHz) technique proved to be sensitive in detecting the degeneration of the superficial collagen-rich cartilage zone. In addition, ultrasound was found to be a potential tool for measuring cartilage thickness. When the results from biomechanical indentation measurements and ultrasound measurements of normal and enzymatically degraded articular cartilage were combined, collagen or proteoglycan degradation in the tissue could be sensitively and specifically differentiated from each other. To conclude, high frequency ultrasound is a useful tool for evaluation of the quality of superficial articular cartilage as well as for the measurement of cartilage thickness. Therefore, ultrasound appears to be a valuable supplement to the mechanical measurements of articular cartilage stiffness.


Subject(s)
Cartilage, Articular/diagnostic imaging , Cartilage, Articular/physiology , Osteoarthritis/diagnostic imaging , Ultrasonography, Doppler, Pulsed , Animals , Cartilage, Articular/metabolism , Cattle , Collagen/metabolism , Proteoglycans/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...