Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 46(12): 134, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127202

ABSTRACT

Active, motor-based cargo transport is important for many cellular functions and cellular development. However, the cell interior is complex and crowded and could have many weak, non-specific interactions with the cargo being transported. To understand how cargo-environment interactions will affect single motor cargo transport and multi-motor cargo transport, we use an artificial quantum dot cargo bound with few (~ 1) to many (~ 5-10) motors allowed to move in a dense microtubule network. We find that kinesin-driven quantum dot cargo is slower than single kinesin-1 motors. Excitingly, there is some recovery of the speed when multiple motors are attached to the cargo. To determine the possible mechanisms of both the slow down and recovery of speed, we have developed a computational model that explicitly incorporates multi-motor cargos interacting non-specifically with nearby microtubules, including, and predominantly with the microtubule on which the cargo is being transported. Our model has recovered the experimentally measured average cargo speed distribution for cargo-motor configurations with few and many motors, implying that numerous, weak, non-specific interactions can slow down cargo transport and multiple motors can reduce these interactions thereby increasing velocity.


Subject(s)
Cytoskeleton , Kinesins , Microtubules
3.
J Phys Chem Lett ; 8(13): 2984-2989, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28605188

ABSTRACT

Supercritical fluids, exhibiting a combination of liquid-like solvation power and gas-like diffusivity, are a relatively unexplored medium for processing and crystallization of oligomer and polymeric semiconductors whose optoelectronic properties critically depend on the microstructure. Here we report oligomer crystallization from the polymer organic semiconductor, poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) in supercritical hexane, yielding needle-like single crystals up to several microns in length. We characterize the crystals' photophysical properties by time- and polarization-resolved photoluminescence (TPRPL) spectroscopy. These techniques reveal two-dimensional interchromophore coupling facilitated by the high degree of π-stacking order within the crystal. Furthermore, the crystals obtained from supercritical fluid were found to be similar photophysically as the crystallites found in solution-cast thin films and distinct from solution-grown crystals that exhibited spectroscopic signatures indicative of different packing geometries.

4.
Sci Rep ; 7: 44290, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287156

ABSTRACT

The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell's control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.


Subject(s)
Computer Simulation , Kinesins/metabolism , Microtubules/metabolism , Models, Theoretical , Animals , Biological Transport , Brain/metabolism , Cattle , Kinesins/chemistry , Microscopy, Fluorescence/methods , Microtubules/chemistry , Polymerization , Swine , Tubulin/chemistry , Tubulin/metabolism
5.
J Phys Chem A ; 119(29): 8010-20, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26125328

ABSTRACT

Rigid-flexible segmented block copolymers were synthesized and characterized as 4.5-oligophenylenevinylene chromophores tethered by flexible, conjugation-interrupting 1,2-ethanedioxy or 1,4-butanedioxy units. The flexible tethers allow the possibility of collapsed order chromophore assemblies within individual polymers by chain folding at specific sites much like an old fashioned, folding carpenter's rule. Our results indicate that using a short, flexible tether in a rigid-flexible segmented copolymer can result in collapsed rodlike structures as signaled by strongly quenched photoluminescence, even after thermal annealing. Such ability to "program" folding and tertiary structure in conjugated copolymers is important for solid-state organic light emitting materials and understanding of organic chromophore self-assembly.

6.
ACS Nano ; 7(10): 8917-23, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24004252

ABSTRACT

We show that mechanically and chemically robust functionalized poly(3-hexylthiophene) (P3HT) nanofibers can be made via chemical cross-linking. Dramatically different photophysical properties are observed depending on the choice of functionalizing moiety and cross-linking strategy. Starting with two different nanofiber families formed from (a) P3HT-b-P3MT or (b) P3HT-b-P3ST diblock copolymers, cross-linking to form robust nanowire structures was readily achieved by either a third-party cross-linking agent (hexamethylene diisocyanate, HDI) which links methoxy side chains on the P3MT system, or direct disulfide cross-link for the P3ST system. Although the nanofiber families have similar gross structure (and almost identical pre-cross-linked absorption spectra), they have completely different photophysics as signaled by ensemble and single nanofiber wavelength- and time-resolved photoluminescence as well as transient absorption (visible and near-IR) probes. For the P3ST diblock nanofibers, excitonic coupling appears to be essentially unchanged before and after cross-linking. In contrast, cross-linked P3MT nanofibers show photoluminescence similar in electronic origin, vibronic structure, and lifetime to unaggregated P3HT molecules, e.g., dissolved in an inert polymer matrix, suggesting almost complete extinction of excitonic coupling. We hypothesize that the different photophysical properties can be understood from structural perturbations resulting from the cross-linking: For the P3MT system, the DIC linker induces a high degree of strain on the P3HT aggregate block, thus disrupting both intra- and interchain coupling. For the P3ST system, the spatial extent of the cross-linking is approximately commensurate with the interlamellar spacing, resulting in a minimally perturbed aggregate structure.

7.
ACS Nano ; 6(12): 10750-8, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23176297

ABSTRACT

Nanoparticles derived from π-conjugated polymers have gained widespread attention as active layer materials in various organic electronics applications. The optoelectronic, charge transfer, and charge transport properties of π-conjugated polymers are intimately connected to the polymer aggregate structure. Herein we show that the internal aggregate structure of regioregular poly(3-hexylthiophene) (P3HT) within polymer nanoparticles can be tuned by solvent composition during nanoparticle fabrication through the miniemulsion process. Using absorption spectra and single-NP photoluminescence decay properties, we show that a solvent mixture consisting of a low boiling good solvent and a high boiling marginal solvent results in polymer aggregate structure with a higher degree of uniformity and structural order. We find that the impact of solvent on the nature of P3HT aggregation within nanoparticles is different from what has been reported in thin films.

8.
Nano Lett ; 11(10): 4425-30, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21905683

ABSTRACT

Spectrally resolved fluorescence imaging of single CdSe/ZnS quantum dots (QDs), charged by electrospray deposition under negative bias has revealed a surprising net blue shift (∼60 meV peak-to-peak) in the distribution of center frequencies in QD band-edge luminescence. Electrostatic force microscopy (EFM) on the electrospray QD samples showed a subpopulation of charged QDs with 4.7 ± 0.7 excess electrons, as well as a significant fraction of uncharged QDs as evidenced by the distinct cantilever response under bias. We show that the blue-shifted peak recombination energy can be understood as a first-order electronic perturbation that affects the band-edge electron- and hole-states differently. These studies provide new insight into the role of electronic perturbations of QD luminescence by excess charges.

SELECTION OF CITATIONS
SEARCH DETAIL
...