Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(27): 17769-17786, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37377211

ABSTRACT

Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.

2.
J Mol Model ; 29(6): 174, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37166566

ABSTRACT

CONTEXT: We present a periodic hybrid DFT investigation of the structural and electronic properties of both stoichiometric and oxygen-defective TiO2 anatase bulk and (101) surface, in singlet and triplet spin states. In all cases, an excellent agreement with available photoelectron spectroscopy data has been obtained, reproducing the offsets of the deep defect levels positions from the conduction band minimum of TiO2 created upon oxygen vacancy (VO) formation. For the bulk, different local structural polaronic distortions around the VO site have been evidenced depending on the spin state considered. Although a similar conclusion has been drawn for the defective surface for the nine different vacancy positions which have been considered, large migration of the twofold coordinated surface O atom has also been evidenced, up to the initial vacancy site in some cases. The very good agreement obtained with available experimental data regarding the offsets from the conduction band minimum of the deep defect levels positions both for the bulk and the (101) surface of TiO2 anatase is encouraging for the application of the proposed hybrid-based computational strategy to TiO2 surface-related processes such as TiO2-based photocatalysis in which oxygen vacancies are known to play a key role. METHODS: All calculations have been performed with Crystal17, considering different hybrid functionals with both effective core pseudopotentials and all-electron atom-centered basis sets, as well as additional empirical dispersion effects with the D2 and D3 models.

3.
J Comput Chem ; 43(20): 1372-1387, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35678272

ABSTRACT

In this work, we introduce an electrostatic and non-electrostatic (ENE) correction to the solvation energy based on the Solvent-Accessible Surface Area (SASA) of the solute and the solvent static dielectric constant. The proposed correction was developed for neutral solutes in non-aqueous solvents, considering three different implicit solvation models based on a Self-Consistent Reaction Field treatment of solute-solvent mutual polarization using an Apparent Surface Charge formalism, namely the Integral Equation Formalism of the Polarizable Continuum Model using a continuous surface charge scheme (PCM), the Solvation Model based on solute electron density (SMD), and the generalized Finite-Difference Poisson-Boltzmann (FDPB) model. The proposed correction was parametrized on a diverse training set of 4980 solvation data from the Solv@tum database of experimental solvation energies, and validated on the non-aqueous subset of the MNSOL database comprising 2140 solvation energies. The performances of the proposed ENE models with minimal and extended parameters formulations have been analyzed and the latter variant has been further compared to the widely used Cavity, Dispersion, and Solvent structural effects (CDS) non-electrostatic model originally developed for the SMx family of implicit solvation models. Overall, a very good agreement between the computed solvation energies with the ENE correction and the reference experimental data has been found on both the training and test sets for all continuum solvation models considered. Furthermore, results for the ENE correction are on par with the reference CDS non-electrostatic model for both SMD and FDPB electrostatics, but with the advantage of using a lower number of parameters and thus an improved transferability between different electrostatics treatments.


Subject(s)
Static Electricity , Databases, Factual , Solvents/chemistry , Thermodynamics
4.
J Comput Chem ; 43(30): 2001-2008, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35762850

ABSTRACT

The absorption spectra of polymers derived from ortho, meta and para phenylenediamines (o-PDA, m-PDA and p-PDA) have been simulated combining periodic density functional theory (DFT) calculations with time-dependent DFT simulations. These latter have been carried out on finite clusters embedded in a set of point charges devised to exactly reproduce the electrostatic potential of the periodic chains. The results are compared with those obtained for solvated o-PDA, m-PDA and p-PDA oligomers of increasing sizes extracted from the periodic structures. The electronic transitions involved have been investigated by a qualitative analysis based on isodensity maps completed by a quantitative analysis based on the density-based index (DCT ). For poly-(o)- and poly-(p)- phenylenediamines the agreement with the experimental data is achieved already by modeling solvated dimers whereas the inclusion of long-range electrostatic effects is mandatory for poly-(m)-phenylenediamine highlighting the importance of an accurate treatment of the electrostatic environment when a finite cluster approach is considered.

5.
J Chem Theory Comput ; 17(10): 6432-6448, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34488338

ABSTRACT

We present an extension of a generalized finite-difference Poisson-Boltzmann (FDPB) continuum solvation model based on a self-consistent reaction field treatment to nonaqueous solvents. Implementation and reparametrization of the cavitation, dispersion, and structural (CDS) effects nonelectrostatic model are presented in CRYSTAL, with applications to both finite and infinite periodic systems. For neutral finite systems, computed errors with respect to available experimental data on free energies of solvation of 2523 solutes in 91 solvents, as well as 144 transfer energies from water to 14 organic solvents are on par with the reference SM12 solvation model for which the CDS parameters have been developed. Calculations performed on a TiO2 anatase surface and compared to VASPsol data revealed an overall very good agreement of computed solvation energies, surface energies, as well as band structure changes upon solvation in three different solvents, validating the general applicability of the reparametrized FDPB approach to neutral nonperiodic and periodic solutes in aqueous and nonaqueous solvents. For ionic species, while the reparametrized CDS model led to large errors on free energies of solvation of anions, addition of a corrective term based on Abraham's acidity of the solvent significantly improved the accuracy of the proposed continuum solvation model, leading to errors on aqueous pKa of a test set of 83 solutes divided by a factor of 4 compared to the reference solvation model based on density (SMD). Overall, therefore, these encouraging results demonstrate that the generalized FDPB continuum solvation model can be applied to a broad range of solutes in various solvents, ranging from finite neutral or charged solutes to extended periodic surfaces.

6.
J Comput Chem ; 42(17): 1212-1224, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33978978

ABSTRACT

We present a generalization of a self-consistent electrostatic embedding approach (SC-Ewald) devised to investigate the photophysical properties of 3D periodic materials, to systems in one- or two-dimensional (2D) reduced periodicity. In this approach, calculations are carried out on a small finite molecular cluster extracted from a periodic model, while the crystalline environment is accounted for by an array of point charges which are fitted to reproduce the exact electrostatic potential (at ground or the excited state) of the infinite periodic system. Periodic density functional theory (DFT) calculations are combined with time dependent DFT calculations to simulate absorption and emission properties of the extended system under investigation. We apply this method to compute the UV-Vis. spectra of bulk and quantum-confined 0D quantum dots and 2D extended nanoplatelets of CdSe, due to their relevance as sensitizers in solar cells technologies. The influence of the size and shape of the finite cluster model chosen in the excited state calculations was also investigated and revealed that, although the long-range electrostatics of the environment are important for the calculation of the UV-Vis, a subtle balance between short- and long-range effects exists. These encouraging results demonstrate that this self-consistent electrostatic embedding approach, when applied in different dimensions, can successfully model the photophysical properties of diverse material classes, making it an attractive low-cost alternative to far more computationally demanding electronic structure methods for excited state calculations.

7.
J Comput Chem ; 41(19): 1740-1747, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32352189

ABSTRACT

A periodic hybrid density functional theory computational strategy is presented to model the heterointerface between the methylammonium lead iodide (MAPI) perovskite and titanium dioxide (TiO2 ), as found in perovskite solar cells (PSC), where the 4-chlorobenzoic acid (CBA) ligand is used to improve the stability and the band alignment at the interface. The CBA ligand acts as a bifunctional linker to efficiently connect the perovskite and the oxide moieties, ensuring the stability of the interface through Ti-O and Pb-Cl interactions. The computed density of states reveals that the perovskite contributes to the top of the valence band while the oxide contributes to the bottom of the conduction band with a direct bandgap of 2.16 eV, indicating a possible electron transfer from MAPI to TiO2 . Dipole moment analysis additionally reveals that the CBA ligand can induce a favorable effect to improve band alignment and thus electron transfer from MAPI to TiO2 . This latter has been quantified by calculation of the spin density of the reduced MAPI/CBA/TiO2 system and indicates an almost quantitative (99.94%) electron transfer from MAPI to TiO2 for the surface engineered system, together with an ultrafast electron injection time in the femtosecond timescale. Overall, the proposed DFT-based computational protocol therefore indicates that surface engineering and the use of a bifunctional linker can lead to a better stability, together with improved band alignment and electron injection in PSC systems.

8.
J Comput Chem ; 41(15): 1464-1479, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32212337

ABSTRACT

In this article, we explore an alternative to the analytical Gauss-Bonnet approach for computing the solvent-accessible surface area (SASA) and its nuclear gradients. These two key quantities are required to evaluate the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models. We extend a previously proposed analytical approach for finite systems based on the stereographic projection technique to infinite periodic systems such as polymers, nanotubes, helices, or surfaces and detail its implementation in the Crystal code. We provide the full derivation of the SASA nuclear gradients, and introduce an iterative perturbation scheme of the atomic coordinates to stabilize the gradients calculation for certain difficult symmetric systems. An excellent agreement of computed SASA with reference analytical values is found for finite systems, while the SASA size-extensivity is verified for infinite periodic systems. In addition, correctness of the analytical gradients is confirmed by the excellent agreement obtained with numerical gradients and by the translational invariance achieved, both for finite and infinite periodic systems. Overall therefore, the stereographic projection approach appears as a general, simple, and efficient technique to compute the key quantities required for the calculation of the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models applicable to both finite and infinite periodic systems.

9.
ACS Appl Mater Interfaces ; 12(1): 744-752, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31813217

ABSTRACT

The family of organic-inorganic hybrid perovskite (OIHPs) materials is one of the most promising for very high-efficiency photovoltaic solar cell application. In the present work, the effect of a series of self-assembled monolayers placed at the TiO2-perovskite junction, on the functioning of triple cation perovskite solar cells has been investigated. We show that employing 4-chlorobenzoic acid leads to the marked boosting of the solar cell performances. The starting pristine cell had a power conversion efficiency (PCE) of 20.3% and the chemical engineering permitted to reach a PCE up to 21.35%. Our experimental study completed by density functional theory calculations and modeling show that this progress is due to the reduction of interfacial states, to the improvement of the quality of the OIHP material and to the structural continuity between TiO2 and the OIHP. Especially, we demonstrate that the interfacial chemical interactions are important to consider in the design of highly efficient devices.

10.
ACS Omega ; 4(23): 20315-20323, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31815234

ABSTRACT

Here, we have studied, with a combined experimental and computational approach, the effect of the crystal environment and aggregation on the electronic properties of Pigment Red 179, which affect both its color and optical energy gap. Spectra acquired in the near-infrared and visible range of energies suggest that this molecule is indeed a "cool" dye, which can be employed as a red pigment that provides effective color coverage to different substrates without contributing to their heating during light irradiation. Spectra acquired on different polymer mixtures at different pigment concentrations (i.e., 2.5-10 wt %) suggest that absorption features depend on chromophoric arrangements promoted by the strong intermolecular π-π interactions. Calculations, performed at the time-dependent density functional theory level, allowed to both attribute the nature of the electronic transitions causing the observed spectra involved and understand the effect of the environment. Indeed, the visible spectra of the pigment is dominated by two localized transitions, with negligible charge transfer for both a dye monomer and dimer either in vacuum or acetonitrile solution. Instead, models including the crystal environment of the pigment show the presence of a high-wavelength S1 ← S0 charge transfer transition between two adjacent molecules, in quantitative agreement with the experimental absorption energy of the crystal pigment.

11.
ACS Appl Mater Interfaces ; 11(35): 32115-32126, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31385698

ABSTRACT

In this research, the low-temperature single-step electrochemical deposition of arrayed ZnO nanowires (NWs) decorated by Au nanoparticles (NPs) with diameters ranging between 10 and 100 nm is successfully demonstrated for the first time. The AuNPs and ZnO NWs were grown simultaneously in the same growth solution in consideration of the HAuCl4 concentration. Optical, structural, and chemical characterizations were analyzed in detail, proving high crystallinity of the NWs as well as the distribution of Au NPs on the surface of zinc oxide NWs demonstrated by transmission electron microscopy. Individual Au NPs-functionalized ZnO NWs (Au-NP/ZnO-NWs) were incorporated into sensor nanodevices using an focused ion bean/scanning electron microscopy (FIB/SEM) scientific instrument. The gas-sensing investigations demonstrated excellent selectivity to hydrogen gas at room temperature (RT) with a gas response, Igas/Iair, as high as 7.5-100 ppm for Au-NP/ZnO-NWs, possessing a AuNP surface coverage of ∼6.4%. The concentration of HAuCl4 in the electrochemical solution was observed to have no significant impact on the gas-sensing parameters in our experiments. This highlights the significant influence of the total Au/ZnO interfacial area establishing Schottky contacts for the achievement of high performances. The most significant performance of H2 response was observed for gas concentrations higher than 500 ppm of H2 in the environment, which was attributed to the surface metallization of ZnO NWs during exposure to hydrogen. For this case, an ultrahigh response of about 32.9 and 47 to 1000 and 5000 ppm of H2 was obtained, respectively. Spin-polarized periodic density functional theory calculations were realized on Au/ZnO bulk and surface-functionalized models, validating the experimental hypothesis. The combination of H2 gas detection at RT, ultralow power consumption, and reduced dimensions makes these micro-nanodevices excellent candidates for hydrogen gas leakage detection, including hydrogen gas monitoring (less than 1 ppm).

12.
Phys Chem Chem Phys ; 21(30): 16647-16657, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31317145

ABSTRACT

The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among the inorganic oxides, ion-exchangeable layered perovskites are particularly interesting, because of their appealing electronic and reactive properties. In particular, their protonated interlayer surface can be easily functionalized with organic groups allowing the production of stable hybrid materials. As a further step in the design of new inorganic-organic hybrid proton conductors, a combined experimental and theoretical study of two intercalated compounds (propanol and imidazole) in HLaNb2O7 is presented here. A generally very good agreement with the available experimental data is found in reproducing both structural features and 13C-NMR chemical shifts, and marked differences between the two considered intercalated compounds are evidenced, with possible important outcomes for proton conduction. Notably, the free imidazole molecules are easily protonated by the acidic protons present in the interlayer spacing, thus inhibiting an efficient charge transport mechanism. In order to overcome this problem, a model system has been considered, where the imidazoles are bound to the end of a butyl chain, the whole being intercalated between two perovskite layers. The obtained theoretical data suggest that, in such a system, proton transfer between two adjacent imidazoles is a barrierless process. These results could then open new perspectives for such hybrid proton conductors.

13.
J Chem Theory Comput ; 14(11): 5969-5983, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30347161

ABSTRACT

We present the implementation of an implicit solvation model in the CRYSTAL code. The solvation energy is separated into two components: the electrostatic contribution arising from a self-consistent reaction field treatment obtained within a generalized finite-difference Poisson model, augmented by a nonelectrostatic contribution proportional to the solvent-accessible surface area of the solute. A discontinuous dielectric boundary is used, along with a solvent-excluded surface built from interlocking atom-centered spheres on which apparent surface point charges are mapped. The procedure is general and can be performed at both the Hartree-Fock and density functional theory levels, with pure or hybrid functionals, for systems periodic in 0, 1, and 2 directions, that is, for isolated molecules and extended polymers and surfaces. The Poisson equation resolution and apparent surface charge formalism is first validated on model analytical test cases. The good agreement obtained on solvation free energies is further confirmed by calculations performed on a large test set of 501 neutral molecules, for which a mean unsigned error of 1.3 kcal/mol is obtained when compared to the available experimental data. Importantly, the self-consistent reaction field procedure converges well for all molecules tested. This is further verified for all polymers and surfaces considered. In particular, for periodic systems, results obtained on an infinite glycine chain and on the wettability parameters of SiO2 surfaces are in good agreement with previously published data. The size extensivity of the energetic terms involved in the electrostatic contribution to the solvation energy is also well verified. These encouraging results constitute a first step to take into account complex environments in the CRYSTAL code, potentially allowing for a more accurate modeling of complex processes for both periodic and nonperiodic systems.

14.
Langmuir ; 34(46): 13828-13836, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30372080

ABSTRACT

In the past few years, core-shell nanoparticles have opened new perspectives for the optoelectronic applications of semiconductor quantum dots. In particular, it has become possible to localize electrons in either part of these heterostructures. Understanding and controlling this phenomenon require a thorough characterization of the interfaces. In this study, we prepared quasi-2D CdSeS/ZnS core-shell nanoplatelets (NPLs) by colloidal atomic layer deposition. This technique allows fine control over the quantum confinement, the surfaces, and the interfaces. The layer-by-layer formation of a the ZnS shell around the CdSeS core was monitored using UV-vis absorption, XRD, and Raman spectroscopy. The measured band gaps and structural distortions were compared with results obtained from density functional theory (DFT) calculations. Modeling has also shown that 34% of the photoexcited electrons are delocalized into the ZnS shell. The herein presented combined modeling and experimental characterization strategy is of general interest since it can be applied to a large choice of layered semiconductor heterostructures in optoelectronics. The present approach paves the way for the synthesis of nanocrystals with precisely engineered properties for light-emitting diodes and solar cells.

15.
Adv Mater ; 30(28): e1800817, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29845662

ABSTRACT

Mechanofluorochromic molecular materials display a change in fluorescence color through mechanical stress. Complex structure-property relationships in both the crystalline and amorphous phases of these materials govern both the presence and strength of this behavior, which is usually deemed the result of a mechanically induced phase transition. However, the precise nature of the emitting species in each phase is often a matter of speculation, resulting from experimental data that are difficult to interpret, and a lack of an acceptable theoretical model capable of capturing complex environmental effects. With a combined strategy using sophisticated experimental techniques and a new theoretical approach, here the varied mechanofluorochromic behavior of a series of difluoroboron diketonates is shown to be driven by the formation of low-energy exciton traps in the amorphous phase, with a limited number of traps giving rise to the full change in fluorescence color. The results highlight intrinsic structural links between crystalline and amorphous phases, and how these may be exploited for further development of powerful mechanofluorochromic assemblies, in line with modern crystal engineering approaches.

16.
J Comput Chem ; 39(11): 637-647, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29271491

ABSTRACT

A comprehensive theoretical study of the oxygen reduction reaction (ORR) over B,N-codoped graphene has been carried out in the framework of DFT using two different approaches based on periodic or cluster models. The comparison and integration of the information provided by the two approaches allow achieving a more complete description of the studied phenomena, combining the advantages of both models. On one hand, the analysis of the structure, stability, and electronic properties of this catalyst permits to identify and characterize the active sites and provides insights into the origin of its high catalytic activity that should be found in the synergistic coupling of the opposite effects of the two B and N heteroatoms used as dopants. On the other hand, the study of the reaction mechanisms evidences that the process is thermodynamically favorable due to the overall high exothermicity, and that the 4e- transfer is the favorite ORR pathway, being the OH hydrogenation the rate-determining step. Overall, all the reported results clearly underline the superior catalytic activity of B,N-codoped graphene toward this reaction. © 2017 Wiley Periodicals, Inc.

17.
J Chem Phys ; 147(14): 144702, 2017 Oct 14.
Article in English | MEDLINE | ID: mdl-29031272

ABSTRACT

A combined experimental and theoretical study of Mg-doped LaGaO3 electrolyte was carried out, with the aim to unveil the interaction between oxygen vacancy (Vo) and perovskite B site cations. LaGaO3 (LG) and LaGa0.875Mg0.125O2.938 (LGM0125) samples were comprehensively characterized by X-ray absorption spectroscopy (XAS) and X-ray diffraction, in order to investigate short- and long-range structures of both undoped and Mg-doped materials. XAS analysis evidenced a preferential Ga-Vo interaction in LGM0125, confirmed by periodic hybrid density functional theory calculations, which were combined with a symmetry-independent classes (SICs) approach in order to (a) obtain a detailed picture of the different Mg and Vo configurations in the doped material and (b) characterize the structural features of the conducting sites. Among the 28 structures of LGM0125 considered in the SIC approach, the Ga-Vo-Ga and Ga-Vo-Mg axial configurations (oriented along the b crystallographic axis) were found to be the most stable. The relative stability of all vacancy configurations considered could be related to geometric distortions of the B-sites, possibly significantly affecting the oxygen-ion diffusion process in such electrolytes.

18.
J Mol Model ; 22(12): 289, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27853949

ABSTRACT

We present hybrid, periodic, spin-polarized density functional theory calculations of antiferromagnetic NiO bulk, of its clean (100) surface and of the binding on this latter of four different organic ligands, relevant for p-type dye-sensitized solar cells (p-DSSC) applications. We find evidence for a strong chemisorption of all ligands to the NiO surface in the form of short interatomic distances between surface Ni atoms and ligand atoms, confirmed by high binding energies. Although the analysis of the impact of the ligand adsorption on the density of states of the NiO substrate reveals significant modifications, the overall picture obtained is in line with the operation principles of p-DSSC in all cases. However, some of the considered ligands significantly shift the density of states to lower energies, which, in p-DSSCs employing these ligands to anchor dyes to NiO, could force the use of dyes with deeper HOMO energies and alternative redox couples capable of accepting electrons from the dye (assuming dye bandgaps in the UV/visible range).

19.
J Chem Theory Comput ; 12(7): 3316-24, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27231786

ABSTRACT

A case study of 1,8-dihydroxy-2-napthaldehyde (DHNA)-exhibiting an excited-state intramolecular double proton transfer resulting in photophysical properties sensitive to the surrounding environment-has been used to assess the performance of electrostatic embedding approaches designed to accurately recover the effects of a bulk crystalline environment on calculated photophysical properties. The first approach, based on time-dependent density functional theory (TD-DFT) applied in a QM/QM' scheme, makes use of a background point charge distribution which can accurately reproduce the exact ground-state Ewald potential of the bulk crystal. The second approach seeks to "optimize" these charges in a self-consistent manner in order to reproduce the electrostatic field produced by the environment at the excited state. Using these two approaches, both absorption and emission properties of molecular crystals, such as the position and the relative shift in the emission bands in the solid state with respect to solution, can be accurately reproduced. More generally, the results obtained show how these computationally affordable approaches can be used to predict the excited-state behavior of molecules in condensed phases, thus allowing their employment to predict or design new molecular materials with enhanced photophysical properties.

20.
J Comput Chem ; 37(9): 861-70, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26919703

ABSTRACT

A new computational protocol relying on the use of electrostatic embedding, derived from QM/QM' ONIOM calculations, to simulate the effect of the crystalline environment on the emission spectra of molecular crystals is here applied to the ß-form of salicylidene aniline (SA). The first singlet excited states (S1 ) of the SA cis-keto and trans-keto conformers, surrounded by a cluster of other molecules representing the crystalline structure, were optimized by using a QM/QM' ONIOM approach with and without electronic embedding. The model system consisting of the central salicylidene aniline molecule was treated at the DFT level by using either the B3LYP, PBE0, or the CAM-B3LYP functional, whereas the real system was treated at the HF level. The CAM-B3LYP/HF level of theory provides emission energies in good agreement with experiment with differences of -20/-32 nm (cis-keto form) and -8/-14 nm (trans-keto form), respectively, whereas notably larger differences are obtained using global hybrids. Though such differences on the optical properties arise from the density functional choice, the contribution of the electronic embedding is rather independent of the functional used. This plays in favor of a more general applicability of the present protocol to other crystalline molecular systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...