Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(17): 30012-30019, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242113

ABSTRACT

In this article we present a directly diode-pumped high-power Kerr-lens mode-locked Yb:CALGO bulk laser oscillator operating at 1-GHz repetition rate. We report on two laser configurations optimized for either highest average power or shortest pulse duration. In the first configuration optimized for high average power, the oscillator delivers up to 6.9 W of average power, which is the highest average power of any ultrafast laser oscillator operating at gigahertz repetition rate. The 93-fs pulses have a peak power of 64 kW, and the optical-to-optical efficiency amounts to 37%. In the second configuration optimized for short pulse duration, we demonstrate 48-fs pulses at 4.1 W of average power corresponding to a higher peak power of 74 kW with 21% optical-to-optical efficiency. This is the shortest pulse duration and the highest peak power demonstrated by any GHz-class Yb-based laser oscillator. The compact laser setup is directly pumped by a low-cost multimode fiber-coupled laser diode and has a high potential as an economical yet powerful source for various applications.

2.
Opt Express ; 30(17): 30969-30979, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242190

ABSTRACT

We experimentally demonstrate an efficient and broadband extreme-ultraviolet light (XUV) out-coupling mechanism of intra-cavity generated high harmonics. The mechanism is based on a coated grazing-incidence plate (GIP), which utilizes the enhanced reflectivity of s-polarized light in comparison to p-polarized light for large angles of incidence (AoI). We design and produce a 60°-AoI coated GIP, tailored specifically for the high demands inside a sub-50-fs Kerr-lens mode-locked Yb:YAG thin-disk laser oscillator in which high harmonic generation (HHG) is driven at ∼450 MW peak power and 17 MHz repetition rate. The coated GIP features an XUV out-coupling efficiency of >25% for photon energies ranging from 10 eV to 60 eV while being anti-reflective for the driving laser field. The XUV spectra reach up to 52 eV in argon and 30 eV in xenon. In a single harmonic, we out-couple 1.3 µW of XUV average power at 37 eV in argon and 5.4 µW at 25 eV in xenon. The combination of an improved HHG driving laser performance and the out-coupling via the coated GIP enabled us to increase the out-coupled XUV average power in a single harmonic by a factor of 20 compared to previous HHG inside ultrafast laser oscillators. Our source approaches the state-of-the-art out-coupled XUV power levels per harmonic of femtosecond enhancement cavities operating at comparable photon energies.

3.
Opt Express ; 30(2): 2528-2538, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209390

ABSTRACT

So far, the operation of ultrafast bulk laser oscillators based on Yb-doped gain materials and directly emitting few-cycle pulses have been restricted to low optical-to-optical efficiencies and average output powers of only a few milliwatt. This performance limitation can be attributed to the commonly-applied standard collinear pumping scheme in which the optical pump is transmitted through a dichroic mirror whose spectral transmission and dispersion properties severely perturb the oscillating pulse when its optical spectrum extends towards the pump wavelength. In this study, we report on a novel pumping scheme relying on cross polarization that overcomes this challenge. In our concept, the pump transmitting mirror is highly transmissive for the pump light in p-polarization, while it is highly reflective for the laser light in s-polarization over a broad wavelength range, even covering the pump wavelength and beyond. In contrast to a standard thin-film polarizer featuring similar polarization dependent properties, it provides a low and flat dispersion profile over a broad spectral range for the s-polarization. Implementing this pumping scheme in a soft-aperture Kerr-lens mode-locked bulk laser oscillator based on the gain material Yb:CALGO, we achieve clean 22-fs soliton pulses at 729 mW of average output power and an optical-to-optical efficiency of 25%. In a second configuration optimized for the highest average output power, we demonstrate a high optical-to-optical efficiency of 36.6%, which was obtained for 31-fs pulses at 1.63 W of average output power. In a third configuration we experimentally confirm the limiting effect of a dichroic mirror commonly used in the standard collinear pumping scheme. All the results presented here and obtained in the first and second configuration generate pulses with a center wavelength ranging from 1030 nm to 1056 nm, well within the spectral region of high gain cross sections of Yb:CALGO. While this initial demonstration was realized using a commercial diffraction-limited fiber laser as pump source, the pump geometry appears also well suited for pumping with laser diodes coupled into multimode fibers. This novel approach opens up new opportunities for compact and cost-efficient high-power few-cycle bulk laser oscillators based on Yb-doped gain materials and can be applied to any gain material with small quantum defect.

4.
Opt Express ; 29(22): 35929-35937, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34809016

ABSTRACT

We experimentally investigate the limits of pulse duration in a Kerr-lens mode-locked Yb:YAG thin-disk laser (TDL) oscillator. Thanks to its excellent mechanical and optical properties, Yb:YAG is one of the most used gain materials for continuous-wave and pulsed TDLs. In mode-locked operation, its 8-nm wide gain bandwidth only directly supports pulses with a minimum duration of approximately 140 fs. For achieving shorter pulses, a Kerr-lens mode-locked TDL oscillator can be operated in the strongly self-phase modulation (SPM) broadened regime. Here, the spectral bandwidth of the oscillating pulse exceeds the available gain bandwidth by generating additional frequencies via SPM inside the Kerr medium. In this work, we study and compare different laser configurations in the strongly SPM-broadened regime. Starting with a configuration providing 84-fs pulses at 69 W average power at 17 MHz repetition rate, we reduce the pulse duration by optimizing various mode-locking parameters. One crucial parameter is the dispersion control which was provided by in-house-developed dispersive mirrors produced by ion-beam sputtering (IBS). We discuss trade-offs in average power, pulse duration, efficiency, and intra-cavity peak power. For the configuration operating at the highest SPM-broadening, we achieve a minimum pulse duration of 27 fs, which represents the shortest pulse duration directly generated by any ultrafast TDL oscillator. The corresponding full width at half maximum (FWHM) spectral bandwidth exceeds more than five times the FWHM gain bandwidth. The average output power of 3.3 W is moderate for ultrafast TDL oscillators, but higher than other Yb-based laser oscillators operating at this pulse duration. Additionally, the corresponding intra-cavity peak power of 0.8 GW is highly attractive for implementing intra-cavity extreme nonlinear optical interactions such as high harmonic generation.

5.
Opt Express ; 29(15): 23729-23735, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614632

ABSTRACT

We demonstrate broadband and powerful terahertz (THz) generation at megahertz repetition rate based on intra-oscillator optical rectification (OR) in gallium phosphide (GaP). By placing the nonlinear crystal directly inside the cavity of a Kerr-lens mode-locked ultrafast diode-pumped solid-state laser (DPSSL) oscillator, we demonstrate a compact and single-stage THz source. Using only 7 W of diode-pump power, we drive OR in a GaP crystal with 22 W of average power at ∼80 MHz repetition rate. In a first configuration, using a 0.3-mm-thick GaP and 105 fs driving pulses, we generate up to 150 µW of THz radiation with a spectrum extending to 5.5 THz. In a second configuration allowing for sub-50-fs pulse duration, we generate up to 7 THz inside a 0.1-mm-thick GaP crystal. This performance is well suited for THz time-domain spectroscopy and THz imaging. Intra-oscillator THz generation in sub-100-fs DPSSLs is a promising way to scale down footprint, complexity and cost of powerful broadband THz sources.

6.
Opt Express ; 29(4): 5833-5839, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726115

ABSTRACT

We demonstrate that Kerr lens modelocking is well-suited for operating an ultrafast thin-disk laser with intra-oscillator high harmonic generation (HHG) in the 100-fs pulse duration regime. Exploiting nearly the full emission bandwidth of the gain material Yb:YAG, we generate 105-fs pulses with an intracavity peak power of 365 MW and an intracavity average power of 470 W. We drive HHG in argon with a peak intensity of ∼7⋅1013 W/cm2 at a repetition rate of 11 MHz. Extreme-ultraviolet (XUV) light is generated up to the 31st harmonic order (H31) at 37 eV, with an average power of ∼0.4 µW in H25 at 30 eV. This work presents a considerable increase in performance of XUV sources based on intra-oscillator HHG and confirms that this approach is a promising technology for simple and portable XUV sources at MHz repetition rates.

7.
Opt Express ; 27(11): 16111-16120, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163797

ABSTRACT

We investigate power-scaling of a Kerr lens mode-locked (KLM) Yb:Lu2O3 thin-disk laser (TDL) oscillator operating in the sub-100-fs pulse duration regime. Employing a scheme with higher round-trip gain by increasing the number of passes through the thin-disk gain element, we increase the average power by a factor of two and the optical-to-optical efficiency by a factor of almost three compared to our previous sub-100-fs mode-locking results. The oscillator generates pulses with a duration of 95 fs at 21.1 W average power and 47.9 MHz repetition rate. We discuss the cavity design for continuous-wave and mode-locked operation and the estimation of the focal length of the Kerr lens. Unlike to usual KLM TDL oscillators, an operation at the edge of the stability zone in continuous-wave operation is not required. This work shows that KLM TDL oscillators based on the gain material Yb:Lu2O3 are an excellent choice for power-scaling of laser oscillators in the sub-100-fs regime, and we expect that such lasers will soon operate at power levels in excess of hundred watts.

8.
Opt Lett ; 43(4): 879-882, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444017

ABSTRACT

We demonstrate the first Kerr lens mode-locked Yb:CaGdAlO4 (Yb:CALGO) thin-disk laser oscillator. It generates pulses with a duration of 30 fs at a central wavelength of 1048 nm and a repetition rate of 124 MHz. The laser emits the shortest pulses generated by a thin-disk laser oscillator, equal to the shortest pulse duration obtained by Yb-doped bulk oscillators. The average output power is currently limited to 150 mW by the low gain and limited disk quality. We expect that more suitable Yb:CALGO disks will enable substantially higher power levels with similar pulse durations.

9.
Phys Rev Lett ; 114(15): 153001, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933311

ABSTRACT

Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers for studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order harmonic generation with aligned molecules in a gas jet at a repetition rate of 154 MHz using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides a means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee the impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the interaction effects on both the field and molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...