Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(44): 44LT01, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32698174

ABSTRACT

We present a thorough exploration of nanopore growth under electrical stress in electrolyte solution, and demonstrate that despite their superficial similarities, nanopore formation by controlled breakdown (CBD) and nanopore growth under moderate voltage stress are fundamentally different processes. In particular, we demonstrate that unlike the CBD process, nanopore growth is primarily driven by the level of ionic current passing through the nanopore, rather than the strength of the electric field generating the current, and that enlargement has a much weaker pH dependence than does CBD pore formation. In combination with other works in the field, our results suggest that despite clear current-dependence, Joule heating is unlikely to be the main driver of pore growth during electrical stress, pointing instead toward electrochemical dissolution of membrane material along the pore walls. While the chemistry underlying the growth process remains unclear, the dependence of growth rate on current allows decoupling of the pore enlargement mechanism from the possibility of forming additional nanopores during the growth process, providing a practical method by which to rapidly enlarge a nanopore without risking opening a second nanopore.

SELECTION OF CITATIONS
SEARCH DETAIL
...